Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(7^n+147\) là số chính phương
=> Đặt: \(7^n+147\) với a là số nguyên khi đó ta có:
\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương
mà: n là số tự nhiên nên \(7^n⋮7\); \(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)
=> \(7^n⋮7^2\)=> n \(\ge\)2
+) Với n = 2k khi đó: \(k\ge1\)
Ta có: \(7^{2k}+147=a^2\)
<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)
Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)
Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2
Thử lại thỏa mãn
+) Với n = 2k + 1 ta có:
\(7^{2k+1}:4\) dư -1
\(147\): 4 dư 3
=> \(7^{2k+1}+147\) chia 4 dư 2
mà số chính phương chia 4 bằng 0 hoặc 1
=> Loại
Vậy: n = 2
giả sử
n2 +2n+12 =k2
=>k2 - n2 =2(n+6)
=>(k+n)(k-n) =2(n+6)
=> k=6 ; n =4
vậy n =4
Đặt \(n^2+16n+2011=k^2\left(k\in N\right)\)
\(< =>\left(n^2+16n+64\right)+1947=k^2\)
\(< =>\left(n+8\right)^2+1947=k^2< =>k^2-\left(n+8\right)^2=1947\)
\(< =>\left(k-n-8\right)\left(k+n+8\right)=1947\)
Có \(k-n-8< k+n+8\)
\(=>\left(k-n-8\right)\left(k+n+8\right)=1.1947=3.649=11.177\)
bn tự giải tiếp nhé,đến đây dễ rồi
_bạn còn thiếu 1 trường hợp là 59 .33 nhé # CTV Hoàng Phúc
Bài nè không bít có được vào CÂU HỎI HAY của OLM không?
1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.
19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)
2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.
Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)
\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)
A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.
3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.