K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

Ta có \(\left(2^n+1\right)⋮7\)

\(\Rightarrow2^n+1\in B\left(7\right)\)

\(\Rightarrow2^n+1\in\text{{}0;7;14;21;35;....\)

\(\Rightarrow2^n\in\text{{}-1;6;13;20;34;41;...\)

Vậy  \(n\in\varnothing\)

17 tháng 4 2020

Ta có \(2^n+1⋮7\)

\(=>2^n+1\in B\left(7\right)\)

\(\Rightarrow2^n+1\in\left(0;7;14,21,35,....\right)\)

\(\Rightarrow2^n\in\left(-1,6,13,20,34,...\right)\)

vậy n \(\in\varnothing\)

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

22 tháng 7 2018

Bài 4 :

Gọi các số đó là a,a+1,a+2,a+3.......,a+45

Ta có 

a+(a+1)+(a+2)+(a+3)+..........+(a+45)

46a+ (1+2+3+4+5+.........+45)

46a+1035

Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46 

=> 46a +1035 không chia hết cho 46

Vậy 46 số tự nhiên liên tiếp không chia hết cho 46 

22 tháng 7 2018

Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1

=> n^2 + 4 chia hết cho 5

Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4

=> n^2 + 1 chia hết cho 5

Nếu n chia hết cho 5

=> A chia hết cho 5

23 tháng 9 2016

Ta có công thức:

a1+ a23 + a33 + ... = (a+ a2 + a3 + ...)2

=> 1+ 23 + 33 + 43 = (1 + 2 + 3 + 4)= 102 chia hết cho 5

=> n = 3

23 tháng 9 2016

cám ơn vì công thức

9 tháng 2 2016

n là những số chắn lớn hơn 1