Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Ta đặt :
\(\hept{\begin{cases}4n+5=a^2\\9n+7=b^2\end{cases}}\)( a,b là các số tự nhiên )
\(\Rightarrow\hept{\begin{cases}36n+45=9a^2\\36n+28=4b^2\end{cases}}\)
\(\Rightarrow\left(36n+45\right)-\left(36n+28\right)=9a^2-4b^2\)
\(\Rightarrow17=\left(3a-2b\right)\left(3a+2b\right)\)
Vì a, b là các số tự nhiên nên 3a-2b , 3a+3b là cá số nguyên và 3a-2b <= 3a+2b nên ta có
\(\left(3a-2b;3a+2b\right)\in\left\{\left(1;17\right);\left(-17;-1\right)\right\}\)
\(\Rightarrow6a\in\left\{18;-18\right\}\)
\(\Rightarrow a\in\left\{3;-3\right\}\)
Mà a là số tự nhiên nên a=3
\(\Rightarrow4n+5=a^2=3^2=9\)
\(\Rightarrow4n=4\)
\(\Rightarrow n=1\)
Vậy n=1
Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.
Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)
$\Rightarrow 2a^2-57\equiv 1\pmod 8$
$\Rightarrow 2a^2\equiv 58\pmod 8$
$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$
(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)
Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.