K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

\(\dfrac{1}{n+3}\);\(\dfrac{2}{n+4}\);...;\(\dfrac{2001}{n+2003}\);\(\dfrac{2002}{n+2004}\)

=\(\dfrac{1}{\left(n+2\right)+1}\);\(\dfrac{2}{\left(n+2\right)+2}\);...;\(\dfrac{2001}{\left(n+2\right)+2001}\);\(\dfrac{2002}{\left(n+2\right)+2002}\)

Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;...;2002

Mà để n nhỏ nhất thì n phải là số nguyên tố nhỏ nhất và phải lớn hơn 2002

Vậy n nhỏ nhất là 2003

9 tháng 3 2018

@Ngô Tấn Đạt

29 tháng 3 2018

Ta có : \(\dfrac{a}{b}\) tối giản \(\Leftrightarrow\dfrac{b}{a}\) tối giản \(\left(a;b\in N\right)\)

\(\Leftrightarrow\dfrac{7}{n+9};\dfrac{8}{n+10};..........;\dfrac{31}{n+33}\) tối giản khi và chỉ khi :

\(\dfrac{n+9}{7};\dfrac{n+10}{8};.......;\dfrac{n+33}{31}\) tối giản

\(\Leftrightarrow\dfrac{\left(n+2\right)+7}{7};\dfrac{\left(n+2\right)+8}{8};........;\dfrac{\left(n+2\right)+31}{31}\)

\(\Leftrightarrow n+2⋮̸\) \(7;8;.......;33\)

\(n+2\) nhỏ nhất do \(n\) nhỏ nhất

\(\Leftrightarrow n+2=35\)

\(\Leftrightarrow n=33\)

Vậy ...

28 tháng 3 2017

Giải:

Ta có:

Các phân số đã cho đều có dạng \(\dfrac{a}{a+\left(n+2\right)}\)

Vì các phân số này tối giản

Nên \(n+2\)\(a\) phải là hai số nguyên tố cùng nhau

Vậy \(n+2\) phải nguyên tố cùng nhau với \(7;8;9;...31\)\(n+2\) phải nhỏ nhất

\(\Rightarrow n+2\) phải là số nguyên tố nhỏ nhất lớn hơn \(31\)

\(\Rightarrow n+2=37\Rightarrow n=35\)

Vậy \(n=35\) thì các phân số trên tối giản

1 tháng 4 2017

cảm ơn bạn nhìu nhìu

17 tháng 8 2017

\(\left\{{}\begin{matrix}1-\dfrac{2}{3}=\dfrac{1}{3}\\1-\dfrac{3}{4}=\dfrac{1}{4}\\1-\dfrac{4}{5}=\dfrac{1}{5}\\1-\dfrac{9}{10}=\dfrac{1}{10}\end{matrix}\right.\)

Vì:

\(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>...>\dfrac{1}{10}\)

nên:

\(\dfrac{2}{3}< \dfrac{3}{4}< \dfrac{4}{5}< ...< \dfrac{9}{10}\)

a)

Ta có:

\(\)\(\left\{{}\begin{matrix}\dfrac{3}{4}=\dfrac{2+1}{3+1}\\\dfrac{4}{5}=\dfrac{3+1}{4+1}\\\dfrac{5}{6}=\dfrac{4+1}{5+1}\\\dfrac{9}{10}=\dfrac{8+1}{9+1}\end{matrix}\right.\)

Suy ra quy luật:

Phân số tiếp theo chính là tử của p/s ban đầu +1/mẫu của p/s ban đầu +1

Vậy phân số sau phân số \(\dfrac{a}{b}\)\(\dfrac{a+1}{b+1}\)

So sánh :

\(\dfrac{a}{b}\)\(\dfrac{a+1}{b+1}\)

\(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\)

\(\dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\)

Vậy cần so sánh:

\(\dfrac{ab+a}{b^2+b}\) với \(\dfrac{ab+b}{b^2+b}\)

Cần so sánh:

\(ab+a\)\(ab+b\)

Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\)

Nếu \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

Nếu \(a=b\) \(\Rightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}=1\)

Còn cách khác ngắn hơn nhưng lười làm lắm :v

17 tháng 8 2017

sao ko làm cách ngắn ngay từ đầu :(

a: =>x(1/2+1/4+1/2017)=x(1/3+1/5+1/2017)

=>x=0

b: =>1/-3=-7/21

e: a/b=2/7

nên a=2/7b

=>b=7/2a

b/c=14/15

=>b=14/15c

\(\Leftrightarrow\)7/2a=14/15c

=>a/c=4/15