K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

1+3+3+...+n=aaa

=> n(n-1):2=a.111

=>n(n-1)=a.222=a.3.2.37

=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36

vậy..............

9 tháng 4 2021

?????????????????????????????????????????

5 tháng 11 2017

mik biết làm nè

5 tháng 11 2017

Bày mik đi

26 tháng 11 2021

Answer:

a) Ta đặt \(a=\left(n;37n+1\right)\) \(\left(a\inℕ^∗\right)\)

Ta có: n chia hết cho a

=> 37n chia hết cho a

=> 37n + 1 chia hết cho a

Do vậy: (37n + 1) - 37n chia hết cho a

=> 1 chia hết cho a

=> a là ước của 1

=> a = 1

=> 37n + 1 và n là hai số nguyên tố cùng nhau

\(\Rightarrow BCNN\left(n;37n+1\right)=\left(37n+1\right)n=37n^2+n\)

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

1 tháng 1 2020

n chia 8 dư 7 ⇒⇒ (n+1) chia hết cho 8 

n chia 31 dư 28 nên (n+3) chia hết cho 31 

Ta có ( n+ 1) +64 chia hết cho 8 ( vì 64 chia hết cho 8) 

= (n+3) + 62 chia hết cho 31 

Vậy (n+65) vừa chia hết cho 31 và 8 

Mà (31,8) = 1( ước chung lớn nhất) 

⇒⇒ n+65 chia hết cho 248 

Ta thấy Vì n<=999 nên (n+65) ⇐⇐ 1064 

⇔⇔ (n+65)/ 248 <= 4,29 

Vì (n+65)/ 248 nguyên và n lớn nhất nên (n+65)/ 248 = 4 

⇒⇒ n= 927

1 tháng 1 2020

Gọi số cần tìm là n 

Theo đề bài ta có:

n=8a+7

n=31b+28

Với a,b nguyên dương

31b+28=8a+7\Leftrightarrow 8a=31b+21\Leftrightarrow a=\frac{31b+21}{8}

Mà do là số có 3 chữ số nên ta có:

100<n<999\Leftrightarrow \left\{\begin{matrix} 100<8a+7<999\\ 100<31b+28< 999\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 11,6<a<124\\ 2,33<b<31,32 \end{matrix}\right.

Do là số lớn nhất có 3 chữ số nên ta thử giá trị b từ 31 giảm dần nhận giá trị nào đầu tiên thì ta được b=29 thoả mãn

Vậy n=31b+28=31.29+28=927

16 tháng 3 2017

Đặt A=102+18n-1

=10n-1+18n

=9999...9(n c/số 9)+18n

=9.11111...1(n c/số 1)+9.2n

=9(1111...1(n c/số 1+2n)

mà 111...1(n c/số 1)=n+9q

=>A=9.(9q+n+2n)

=>A=9(9q+3n)

=9.3.(3q+n)

=27(3q+n)

=>\(A⋮27\)

vậy...(đccm)

mấy bài sau dễ òi

bn tự làm nhé

16 tháng 3 2017

Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?

18 tháng 10 2015

Câu a dễ ợt mà nó xưa lắm rùi

Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 
Thế thì a + 2 chia hết cho 3, 4, 5 và 6 
=> a + 2 là BC (3, 4, 5, 6) 
BCNN (3, 4, 5, 6) = 60 
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...} 
Trong các số trên chỉ có số 600 là thỏa 
vì a + 2 = 600 
=> a = 600 - 2 = 598 chia hết cho 13. 
Vậy a = 598

Câu b cũng vậy

Ta có: 
4n - 5 
= 4n - 2 - 3 
= 2(2n - 1) - 3 
4n - 5⋮2n - 1 
⇔2(2n - 1) - 3⋮2n - 1 
2(2n - 1)⋮2n - 1 
=>3⋮2n - 1 
hay 2n - 1∈Ư(3) 
Ư(3) = {1;-1;3;-3} 
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1 
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0 
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2 
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1 
Vì n ∈ N nên n = {0;1;2}