K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25

:3

25 tháng 3 2018

Trả lời

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25

19 tháng 3 2018

Đặt \(A=3^{2n+3}+2^{4n+1}\)

\(=27.3^{2n}+2.2^{4n}\)

\(=25.3^{2n}+2.3^{2n}+2.2^{4n}\)

\(=25.3^{2n}+2\left(3^{2n}+2^{4n}\right)\)

\(=BS25+2\left(9^n+16^n\right)\)

\(\cdot\)Với n lẻ thì 9n+16n⋮25

\(\Rightarrow A⋮25\)

\(\cdot\)Với n chẵn thì 9ncó tận cùng bằng 1, 16n có tận cùng bằng 6 do đó A không chia hết cho 25 với n chẵn

Vậy với n lẻ thì \(3^{2n+3}+2^{4n+1}\) chia hết cho 25

30 tháng 10 2019

BS là gì vậy ạ

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

15 tháng 12 2016

làm câu