Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n4 + 4 = (n4 + 4n2 +4) - 4n2 = (n2 + 2)2 - (2n)2
Ta có:n2 + 2n + 2 = (n+1)2 + 1\(\ge\)với \(n\in N\)
n2 - 2n + 2 = (n-1)2 + 1\(\ge\)với \(n\in N\)
Để n4 + 4 là số ngto => chỉ có 2 số là 1 và chính nó
=>n2 + 2n + 2 = n4 +4 và n2 - 2n + 2 = (n-1)2+1=1
(n-1)2+1=1=>n-1=0=>n=1
n=1 thì n4 là số ngto
Vậy không có số nào thỏa mãn điều kiện
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
nếu giả sử câu b cũng tương tự như câu a thi ta co cach nhu sau
4 mũ n-1 chia hết cho 3 thì suy ra n=2
n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1]
Vì n là số tự nhiên nên xét các trường hợp
-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại
-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn
-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại
Vậy n = 1 để n4 + 4 là số nguyên tố.
n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1]
Vì n là số tự nhiên nên xét các trường hợp
-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại
-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn
-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại
Vậy n = 1 để n4 + 4 là số nguyên tố.