Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
1. Gọi số tự nhiên bất kì là a
Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3
Vậy…
2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2
Lại có 424 = 2.212 chia hết cho 2
Vậy…
(n+2) chia hết (n+2)
=>[(3n+10)-(n+2)] chia hết cho (n+2)
[(3n+10)-(n+2)x3] chia hết cho (n+2)
[(3n+10)-(3n+6)] chia hết cho (n+2)
=4 chia hết cho (n+2)
Ư(4)={1;2;4}
(n+2) | n | chọn/loại |
1 | -1 | loại |
2 | 0 | chọn |
4 | 2 | chọn |
n thuộc {0;2}
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666 Và a=6
n=n-2+2 vì n chia hết cho n-2 nên 2 phải chia hết cho n-2
suy ra n-2 thuộc U(2)={1;2)
TH1: n-2=1 thì n=3
TH2; n-2=2 thì n=4
Vậy n=3 hoặc n=4
Ta có \(\left(n^2+7n+9\right)⋮\left(n+3\right)\)
\(\Leftrightarrow\left[\left(n^2+3n\right)+\left(4n+12\right)-3\right]⋮\left(n+3\right)\)
\(\Leftrightarrow\left[n\left(n+3\right)+4\left(n+3\right)-3\right]⋮\left(n+3\right)\)
\(\Rightarrow-3⋮\left(n+3\right)\)Hay \(n+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Vậy \(n\in\left\{-6;-4;-2;0\right\}\)
Ta có: \(\frac{n^2+7n+9}{n+3}=\frac{n^2+3n+3n+9}{n+3}+\frac{n}{n+3}\)
= \(\frac{\left(n+3\right)^2}{n+3}+\frac{n+3-3}{n+3}=n+3+1-\frac{3}{n+3}\)=> x + 4 - 3/n+3
Do n thuộc N => n+ 4 thuộc N; Để \(n^2+7n+9⋮n+3=>3⋮n+3\)
Hay n+3 thuộc Ư(3)
=> n+ 3 thuộc { -3;-1;1;3}
=> n thuộc { -6; -4; -2;0}
Mà n thuộc N nên n =0