Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(n^2+2n+12\) là scp nên
\(n^2+2n+12=k^2\)
\(\Leftrightarrow\left(n^2+2n+1\right)+11=k^2\)
\(\Leftrightarrow k^2-\left(n+1\right)^2=11\)
\(\Leftrightarrow\left(k-n-1\right)\left(k+n+1\right)=11\)
Vì k-n-1<k+n+1 nên
\(\left(k-n-1\right)\left(k+n+1\right)=1\cdot11\)
\(\hept{\begin{cases}k-n-1=1\\k+n+1=11\end{cases}\Leftrightarrow\hept{\begin{cases}k-n=2\\k+n=10\end{cases}\Leftrightarrow}\hept{\begin{cases}k=6\\n=4\end{cases}}}\)
Vậy n=4
b) Tương tự
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
nhớ chọn câu trả lời của mình nhe