K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021
Ta có: 2n+6/n+1=2+4/n+1 Để n là số nguyên thì 2+4/n+1 là số nguyên => n+1 là ước nguyên của 4 với n khác -1 => n+1 thuộc tập {1,-1,2,-2,4,-4} *n+1=1 => n=0(TMĐK) *n+1=-1=>n=-2(TMĐk) *n+1=2=>n=1(TMĐK) *n+1=-2=>n=-3(TMĐK) *n+1=4=>n=3(TMĐK) n+1=-4=>n=-5(_TMĐK)
25 tháng 2 2017

\(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)+4}{n+1}=2+\frac{4}{n+1}\)

Để \(2+\frac{4}{n+1}\) là số nguyên tố <=> \(\frac{4}{n+1}\) là số nguyên tố 

Mà n là số tự nhiên => n + 1 thuộc ước nguyên dương của 4

=> Ư(4) = { 1; 2; 4 }

Với n + 1 = 1 => n = 0 => A = 6 ko là số nguyên tố ( loại )

Với n + 1 = 2 => n = 1 => A = 4 ko là số nguyên tố ( loại )

Với n + 1 = 4 => n = 3 => A = 3 là số nguyên tố ( chọn )

Vậy n = 3 thì A là số nguyên tố 

25 tháng 2 2017

Để a là số nguyên tố thì phân số a tối giản

=} ƯCLN của tử và mẫu là 1

Gọi d = ƯCLN(2n+6,n+1)

Khi đó n+1 chia hết cho d =} 2(n+1) chia hết cho d

=} 2n+2 chia hết cho d

Do đó (2n+6) - (2n+2) chia hết cho d

Hay 2n+6-2n-2 chia hết cho d

=} 4 chia hết cho d =} d£ Ư(4) = { 1;2;4 }

Vì 2n+6 chia hết cho 2 mà n+1 ko chia hết cho 2

=} d khác 2

Mik chỉ làm được đến đây thôi

Phần còn lại bạn tự tìm cách chứng minh d=1 nha

cho mik với 

=} là suy ra

£ là thuộc 

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

11 tháng 1 2015

mik pít đấy:giải:

ta có 2n+6 chia hết cho n+1

2n+6 = 2n+2+4 =2(n+1)+4

 mà 2(n+1)chia hết cho n ,suy ra

4 cũng phải chia hết cho n =>n thuộc ư(4)

Ư(4)=1;2;4

     thử chọn:

 n+1=1=> n=0(0 ko pải là số nguyên tố nên ta loại)

n+1=2=>n=1(1 ko pải là số nguyên tố nên ta loại)

n+1=4=>n=3(3 là số nguyên tố nên ta chọn)

Vậy n=3

6 tháng 6 2018

gọi \(d\in UC\left(2n+6;n+1\right)\)
\(\text{= 1 ( 2n + 6 ) - 2 ( n + 1 ) }⋮d\)

\(\text{= 2n + 6 - 2n - 1}⋮d\)

\(=5⋮d\) \(\Rightarrow d\in U\left(5\right)=\left\{1;-1;5;-5\right\}\)

thay 1 vào  ( t/m )

thay 5 vào  ( ko t/m )

thay -1 ; -5 ( ko phải là số tự nhiên nên ko t/m )

vậy n = 1

26 tháng 1 2018

a . n+4\(⋮\)n+1

\(\Rightarrow\)(n+1)+3 \(⋮\)n+1

mà n+1 \(⋮\)n+1 \(\Rightarrow\)3\(⋮\)n+1 hay n+1 \(\in\)ước của 3

ta có bảng sau:

n+1-113-3
n-202-4

vậy n \(\in\)(-2;0;2;-4)

các bài sau cứ làm tưng tự nhé
 

\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)

\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)

\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)

\(=>6\text{chia hết cho d}\)

\(=>\text{ d thuộc ước của 6}\)

              \(\text{Để A là số nguyên tố thì d khác 6 }\)

\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)