K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

\(A=1+3+3^2+3^3+...+3^{101}\)

\(3A=3+3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-1\)

\(A=\left(3^{101}-1\right):2\)

8 tháng 7 2015

Thu gọn tổng sau:

A=1+3+32+33+...+3100 

B= 2100-299-298-297-...-22-2

C= 3100-399+398-397-...+32-3+1 

8 tháng 7 2015

2) a) 2x.(22 - 1) = 96 => 2x. 3 = 96 => 2x = 96 : 3 = 32 = 25 => x = 5

b) 7x. (72 + 2. 7-1) = 345 => 7x\(\frac{345}{7}\) = 345 => 7x = 7 => x = 1

c)  3x-1. (1 + 5) = 162 => 3x-1 . 6 = 162 => 3x-1 = 162 : 6 = 27 = 33 => x - 1 = 3 => x = 3 + 1 = 4

8 tháng 7 2015

1) a)  (33)n = 9.3n => 33n = 32.3n = 32+n => 3n = 2 + n => 3n - n = 2 => 2n = 2 => n = 1

b) 3-2+4+n = 37 => 2 + n = 7 => n = 7 - 2 = 5

c) 2n.(2-1 + 4) = 9.25 => 2n.\(\frac{9}{2}\) = 9.25 => 2n-1 = 25 => n - 1 = 5 => n = 5 + 1 = 6

d)  (25)-n.(24)= 211 => 2-5n. 24n = 211 => 2-5n+4n = 211 => 2-n = 211 => -n = 11 => n = -11

 

24 tháng 8 2019

a) \(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)

\(\Leftrightarrow3^{3n-2}=3^n\)

\(\Leftrightarrow3n-2=n\)

\(\Leftrightarrow2n=2\)

\(\Leftrightarrow n=1\)

24 tháng 8 2019

b)\(3^{-2}.3^4.3^n=3^7\)

\(\Leftrightarrow3^{2+n}=3^7\)

\(\Leftrightarrow2+n=7\)

\(\Leftrightarrow n=5\)

1 tháng 7 2015

a, \(\frac{1}{9}.27^n=3^n\Leftrightarrow\frac{1}{9}.3^{3.n}=3^n\Leftrightarrow\frac{1}{3^2}=3^n:3^{3n}\Leftrightarrow\frac{1}{3^2}=3^{n-3n}=3^{2n}\)

=> 3^2n . 3^2 = 1 => 3^( 2n + 2) = 3^0 => 2n + 2 = 0 => 2n = - 2 => n = - 1 

b, 3^-2.3^4 .3^n = 3^ 7 => 3^ ( -2 + 4 + n) = 3^7 => 3^ (n+ 2) = 3^7 => n + 2 = 7 => n = 5

 

24 tháng 8 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Khánh Huyền⁀ᶦᵈᵒᶫ .

Chúc bạn học tốt!

18 tháng 7 2018

a)\(\dfrac{1}{9}.27^n=3^n\)

<=>27n=3n:\(\dfrac{1}{9}\)

<=>27n:3n=\(\dfrac{1}{9}\)

<=>33n:3n=\(\dfrac{1}{9}\)

<=>32n=\(\dfrac{1}{9}\)

<=>9n=\(\dfrac{1}{9}\)

<=>9n+1=1

<=>n+1=0

<=>n=-1

vậy n=-1

11 tháng 11 2016

a)\(32^{-n}\cdot16^n=2048\)

\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048

\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)

\(2^{-5n+4n}=2^{11}\)

\(2^{-x}=2^{11}\)

\(\Rightarrow x=-11\)

b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)

\(2^n\left(\frac{1}{2}+4\right)=288\)

\(2^n\cdot\frac{9}{2}=288\)

\(2^n=288:\frac{9}{2}\)

\(2^n=64\)

\(2^n=2^6\)

\(\Rightarrow n=6\)

11 tháng 11 2016

a) 32-n . 16n = 2048

\(\frac{1}{32n}\) . 16n = 2048

\(\frac{1}{2^n.16^n}\) . 16n = 2048

\(\frac{1}{2^n}\) = 2048

2-n = 2048

2-n = 211

\(\Rightarrow\) -n = 11

\(\Rightarrow\) n = -11

Vậy n = -11

a: \(\Leftrightarrow3^n:27^n=\dfrac{1}{9}\)

\(\Leftrightarrow\left(\dfrac{1}{9}\right)^n=\dfrac{1}{9}\)

hay n=1

b: \(\Leftrightarrow3^n\cdot3^2=3^8\)

=>n+2=8

hay n=6

c: \(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\)

\(\Leftrightarrow2^n=2^6\)

hay n=6

d: \(\Leftrightarrow8^n=512\)

hay n=3

17 tháng 7 2018

a) 2x + 2 − 2x = 96

=> 2x (22 - 1) = 96

=> 2x . 3 = 96

=> 2x = 32

=> x = 5 \(\in\)Z(thỏa mãn)

b) 7x + 2 + 2.7x - 1 = 345

=> 7x - 1 (73 + 2) = 345

=> 7x - 1 . 345 = 345

=> 7x - 1 =1

=> x - 1 = 0

=> x = 1 \(\in\)Z(thỏa mãn)

c) 3x - 1 + 5.3x - 1 = 162

=> 3x - 1 (1 + 5) = 162

=> 3x - 1 . 6 = 162

=> 3x - 1 = 27

=> x - 1 = 3

=> x = 4 \(\in\) Z(thỏa mãn)