Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-G/s mệnh đề 1,2 đúng.
\(\Rightarrow A+41\) có chữ số tận cùng là 2 \(\Rightarrow\)A không thể là số chính phương
\(\Rightarrow\)vô lý.
-G/s mệnh đề 2,3 đúng.
\(\Rightarrow A-48\) có chữ số tận cùng là 3 \(\Rightarrow\)A không thể là số chính phương
\(\Rightarrow\)vô lý
\(\Rightarrow\)Mệnh đề 1,3 đúng.
-Đặt \(A+41=a^2;A-48=b^2\) (a, b là các tự nhiên khác 48).
\(\Rightarrow a^2-b^2=\left(A+41\right)-\left(A-48\right)=89\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=1.89\)
-Vì a,b là các số tự nhiên, a-b<a+b và 89 là số nguyên tố.
\(\Rightarrow a-b=1;a+b=89\Rightarrow a=45;b=44\)
-Vậy A=\(45^2-41=1984\)
đuối rồi :))
a) A=(n+1)(n+2)(n+3)(n+4)+1
A= (n+1)(n+4)(n+2)(n+3)+1
A=(n2+5n+4)(n2+5n+6)+1
Đặt n2+5n+5 =y ta có:
A=(y-1)(y+1) +1 =y2-1+1=y2
\(\Rightarrow\)A= (n2+5n+5) là 1 số chính phương
b)Đề sai ở chỗ 2017.2018 sửa lại là: 2.2017.2018
Thì A = 20172+20182+2.2017.2018
A = (2017+2018)2
A = 40352 là 1 số chính phương .
Ta có: a = 4b + 1
=> a + 7 = 4b + 1 + 7= 4b + 8 \(⋮\)b
=> 8 \(⋮b\) và b là số tự nhiên
=> b\(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
+ b = 1=> a = 5 => a + 2b = 5 +2 .1 = 7 là số nguyên tố ( thỏa mãn )
+) b = 2 => a = 9 => a + 2b = 9 + 2 . 2 = 13 là số nguyên tố ( thỏa mãn )
+) b = 4 => a = 17 => a + 2b = 17 + 2.4 = 25 không là số nguyên tố ( loại )
+) b = 8 => a = 33 => a + 2b = 49 không là số nguyen tố ( loại )
Vậy có các cặp (a; b ) là ( 5; 1) và ( 9; 2).