K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BB
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NP
1
N
4
25 tháng 10 2016
ta có A=1+3+32+33+......+399+3100
=>3A= 3+32+33+34+......+3100+3101
- A=1+3+32+33+.......+399+3100
=> 2A=3101-1 mà 2A+1=3n =>3101-1+1
=> 3101-3n
=> n= 101
k cho mik nha!
L
1
18 tháng 7 2016
a = 3 + 32 + 33 + ... + 399 + 3100
3a = 32 + 33 + 34 + ... + 3100 + 3101
3a - a = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)
2a = 3101 - 3
2a + 3 = 3101 = 3n
=> n = 101
Vậy n = 101
VN
0
NN
0
DR
2
5 tháng 1 2019
bài làm
2n - 1 - 2 - 22 - 23 - .............. - 2100 = 1
2n - ( 1 + 2 - 22 + 23 + ........ + 2100 ) = 1
2n - ( 2101 - 1 ) = 1
2n - 1 = 2101 - 1
=> 2n = 2101
Vậy n = 101
ĐặtA = \(2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2=2^{2n-1}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)
Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2.\left(2+2^2+...+2^{100}\right)\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
Ta có : \(2^{2n-1}-2=2^{101}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\)
\(\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)