K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

\(\overline{xy}=10.x+y\) . Khi đó, \(\frac{\overline{xy}}{x+y}=\frac{10x+y}{x+y}\)

Mặt khác, \(\frac{10x+y}{x+y}=\frac{100x+10y}{10\left(x+y\right)}=\frac{19\left(x+y\right)+81-9y}{10\left(x+y\right)}=\frac{19}{10}+\frac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\frac{19}{10}\)

Do đó, \(\frac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất \(\frac{19}{10}\) khi \(9x-y=0\) , hay x = 1, y = 9.

Vậy số cần tìm là 19

22 tháng 1 2022

MÌNH KO HIÊU

26 tháng 5 2016

1) Ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Rightarrow Min\)\(A=2\Leftrightarrow a=b\)

2) Ta có : xy < 0 => Một trong hai số x,y tốn tại một số âm và một số dương.

Ta xét hai trường hợp : 

1. Với \(x< 0< y\), ta có : 

\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{-\left(x-y\right)}\left(\frac{x}{-x}+\frac{y}{y}\right)=-1-1\left(-1+1\right)=-1\)

2. Với \(y< 0< x\) ta có : 

\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)=\frac{xy}{-xy}+\frac{x-y}{x-y}\left(\frac{x}{x}+\frac{y}{-y}\right)=-1+1.\left(1-1\right)=-1\)

Vậy ta kết luận : Với xy<0 thì giá trị của P là : -1

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D