Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có: abc - cba = 495
=> (100a + 10b + c) - (100c + 10b + a) = 495
=> 99a - 99c = 495
=> 99.(a - c) = 495
=> a - c = 495 : 99
=> a - c = 5
\(\Rightarrow\begin{cases}a=5\\c=0\end{cases}\) hoặc \(\begin{cases}a=6\\c=1\end{cases}\) hoặc \(\begin{cases}a=7\\c=2\end{cases}\) hoặc \(\begin{cases}a=8\\c=3\end{cases}\) hoặc \(\begin{cases}a=9\\c=4\end{cases}\)
Lại có: b2 = a.c
Như vậy, ta chọn được cặp giá trị \(\begin{cases}a=5\\c=0\end{cases}\) và \(\begin{cases}a=9\\c=4\end{cases}\) thỏa mãn
Giá trị b tương ứng là: 0; 6
Vậy số cần tìm là 500 và 964
Gọi số cần tìm là abc
Do số tự nhiên đó trừ đi số gồm ba chữ số viết theo thứ tự ngược lại bằng 495 nên:
100a + 10b + c - 100c - 10b - a = 495 (c khác 0)
=> 99(a - c) = 495
=> a - c = 5
=> a = 9, c = 4 => a*c = 36 (nhận) (bình phương chữ số hàng chục bằng tích hai số kia)
a = 8, c = 3 => a*c = 24 (loại)
a = 7, c = 2 => a*c = 14 (loại)
a = 6, c = 1 => a*c = 6 (loại)
b^2 = 36 => b = 6
Vậy số cần tìm là 964
ab= 91
đúng đó
nhớ k nha
^_^"
ta có \(\overline{ab}-\overline{ba}=72\)
\(\overline{a0}+b-\left(\overline{b0}+a\right)=72\)
\(10.a+b-10.b-a=72\)
\(9.a-9.b+72\)
\(9.\left(a-b\right)=72\)
\(a-b=72:9=8\)
xét trường hợp 1:
a = 9 , b = 1 thì ab = 91
a = 10 , b = 2 (loại vì ab là số tự nhiên có 2 chữ số)
Vậy số tự nhiên cần tìm là 91