Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 ‐1 ≤ 999 => 101 ≤ n^2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n ‐ 5 ≤ 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 67
Bài này có trên onlinemath rùi
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 -1 ≤ 999 => 101 ≤ n^2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n - 5 ≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 -1 ≤ 999 => 101 ≤ n^2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n - 5 ≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 $\le$≤ abc $\le$≤ 999 nên:
100 $\le$≤ n^2 -1 $\le$≤ 999 => 101 $\le$≤ n^2 $\le$≤ 1000 => 11 $\le$≤ 31 => 39 $\le$≤ 4n - 5 $\le$≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
abc = 100a + 10b + c = n2 - 1
cba = 100c + 10b + c = n2 - 4n + 4
Từ 1 và 2 => 99 (a - c) = 4n - 5 ;99
Mặt khác 100 [n2 - 1 [999 <=> 101 [n2 [1000 <=>11[n[31 <=>39[4n -5(119(4)
Từ (3) và (4) => 4n - 5 = 99 => n=26
Vậy abc = 675