Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
a) Gọi số thứ nhất là k, số thứ hai là k + 1, số thứ ba là k + 2, số thứ tư là k + 3. Ta có
k + k + 1 + k + 2 + k + 3
k x 4 + 6
Vì k x 4 + 6 ko chia hết cho 4 nên tổng của 4 số tự nhiên liên tiếp ko chia hết cho 4.
b) Ta có:
\(\overline{aaa}=3\times37\times a\)
Vậy, \(\overline{aaa}⋮37\)
a) gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3
Theo đề bài ta có: a + (a+1)+ ( a+2)+(a+3) = (a+a+a+a)+(1+2+3) = 4a + 6 =>...............
b) \(\overline{aaa\overline{ }=100a+10+a=111a}\)
Do 11 chia hết cho 37 => 111a chia hết cho 37=> aaa chia hết cho 37
a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)
Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)
=> a - 1 chia hết cho 2;3;4;5;6
Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)
=> a = 60 + 1 = 61
(Xem lại đề, vì chỗ chia hết cho 7??)
b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\)
Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5
<=> y = {0;5}
Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9
Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9
Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9
=> x = {0;8}
Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9
=> x = 4
Vậy x = {0;8;4} và y = {0;5}
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
( 9 + x ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
( 14 + x ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4
Các số đó là : 11;12;24;36;15
ahihi tại ghi nhìu mất công nên mik ghi thế thui nhé !!!
\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)
\(=99\left(a-c\right)=495\Rightarrow a-c=5\)
=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36
Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4
\(\overline{abc}=\left\{904;914;...;994\right\}\)
Ta có :
Số cần tìm được lập từ các số nguyên tố và chia hết cho các chữ số đó.
Vậy ta cho 3 chữ số đó là : 3 ; 5 ; 7
Vì \(\overline{abc}\) chia hết cho 5 nên c = 5 .
Vì 375 không chia hết cho 7 nên số cần tìm là 735 ( TM)
b=0
2+a+3+0 chia hết cho 9
.............................
T giải chắc cm you cũng chẳng hiểu đâu
Ta có: \(\overline{2a3b}\) chia hết cho 90
=> \(\overline{2a3b}\) chia hết cho 9 và 10
Vì \(\overline{2a3b}\) phải chia hết cho 10 nên b = 0
Vì \(\overline{2a30}\) phải chia hết cho 9 nên 2 + a + 3 + 0 phải chia hết cho 9 nên a chỉ có thể là 4.
Vậy \(a=4;b=0\)