K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

  Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 

Tick mình đi Hoàng Thái

18 tháng 12 2015

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
Tôi đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng: 
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)

18 tháng 12 2015

gọi n là số cần tìm, theo đề bài: 
{n=11a+5 
{n=13b+8 
=>11a-13b-3=0 hay 11a-13b=3 
=>a=(13b+3)/11=b+(2b+3)/11=>2b+3 chia hết cho 11 
=>2b=11p-3=>p lẻ. 
mặt khác n>=100 và n là số tự nhiên 
=>13b+8>=100=>b>=8=> p>1 
để n nhỏ nhất thì b phải nhỏ nhất=>p nhỏ nhất. 
mà p lẻ và lớn hơn 1=>p=3=>b=15 
=>n=203

Tick nha 

8 tháng 10 2016

gọi số phải tìm là A, thì A có dạng:A=17m+5=19n+12(với m,n là các số tự nhiên)

=>3A+2=51m+17=57n+38=>3A+2=17(3m+1)=19(3n+2)

Vậy 3A+2 đồng thời chia hết cho 17 và 19.Số nhỏ nhất thỏa mãn là 323.

3A+2=323=>A=107

Gọi số phải tìm là A, A có dạng = 17m + 5 = 19n + 12 ( với m,n là các số tự nhiên )

=> 3A + 2 = 51m + 17 = 57n + 38 => 3A + 2 = 17 ( 3m + 1 ) = 19 ( 3n + 2 )

Vậy 3A + 2 đồng thời chia hết cho 17 và 19 . Số nhỏ nhất thỏa mãn đó là số 323

3A + 2 = 323 => A = 107

10 tháng 7 2015

a=117 dung chac luon ****

10 tháng 11 2016

Gọi số cần tìm là a (100 < a < 999)

Ta có:

a = 4k + 3 = 5m+4=6n+5 ( m,n,k thuộc N sao)

a + 1 = 4k + 3 + 1=5m+4+1=6n+5+1

a+1=4k+4=5m+5=6n+6

a+1=4(k+1) = 5(m+1)=6(n+1)

Vì m,n,k thuộc N sao nên m+1;n+1;k+1 thuộc N sao

=> a + 1 chia hết cho 4;5;6

=>a+1 thuộc BC của 4;5;6

Mà BCNN của 4;5;6 = 60

=> a+1 thuộc tập hợp bội của 60

Để a là số có 3 chữ số nhỏ nhất thì a + 1 nhỏ nhất

=> a + 1 = 120

=> a = 119

Vậy số cần tìm là 119

30 tháng 11 2016

 Gọi số phải tìm là A, thì A có dạng: A=17m+5 = 19n+12 (với m, n là các số tự nhiên) 
--> 3A+2 =51m+17 =57n+38 ---> 3A+2 =17(3m+1)=19(3n+2) 
Vậy 3A+2 đồng thời chia hết cho 17 và 19. Số nhỏ nhất thỏa mãn đó là 323 
3A+2= 323 --> A=107

30 tháng 11 2016

Gọi số cần tìm là A, thì A có dạng A=17m+5=19n+12 (với m,n là các số tự nhiên)

=>3A+2=51m+17=57n+38=3A+2=17(3m+1)=19(3n+2)

Vậy 3A+2=323=>A=107

13 tháng 1 2016

Gọi số đã cho là A.Ta có:
A = 4a + 3 
 = 17b + 9          (a,b,c thuộc N)
 = 19c + 3 
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
                 =17b+9+25=17b+34=17(b+2)
                =19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.

13 tháng 1 2016

A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267

99 % thui nha

6 tháng 4 2016

 vì x chia cho 131 dư 112 ; chia cho 132 dư 98 nên x = 131x b + 112 = 132 x c + 98

                                                                     x +