K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2015

Mình nghĩ là n = 199. (Có sai đừng trách mình nha!!!)

 

6 tháng 5 2015

mình nghỉ chắc là 199 ( sai đừng trách tui nha )

25 tháng 4 2017

Ta có:

\(\dfrac{n}{a+b+c}=\dfrac{100a+10b+c}{a+b+c}=1+\dfrac{99a+9b}{a+b+c}\)

\(\ge1+\dfrac{99a+9b}{a+b+9}=10+\dfrac{90a-81}{a+b+9}\ge10+\dfrac{90a-81}{a+18}\)

\(=100+\dfrac{-1701}{a+18}\ge100-\dfrac{1701}{19}=\dfrac{199}{19}\)

Dấu = xảy ra khi:\(\left\{{}\begin{matrix}a=1\\b=c=9\end{matrix}\right.\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

5 tháng 3 2021

GTNN P là -3 phần 2 khi và chỉ khi x=0

5 tháng 3 2021

đó là lớn nhất bạn

 

3 tháng 12 2023

Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.

Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:

 

5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2

Trong đó a và b là các số nguyên. Từ đó, ta có:

 

a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)

Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:

 

(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)

Từ đó, ta suy ra:

 

a^2 = 5 + (1/2)sqrt(25 - n)

Tương tự, ta có:

 

b^2 = 5 - (1/2)sqrt(25 - n)

Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:

 

25 - n = 4k^2

Với k là một số nguyên. Từ đó, ta suy ra:

 

n = 25 - 4k^2

Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.

Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.

3 tháng 12 2023

Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.

Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:

 

5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2

Trong đó a và b là các số nguyên. Từ đó, ta có:

 

a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)

Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:

 

(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)

Từ đó, ta suy ra:

 

a^2 = 5 + (1/2)sqrt(25 - n)

Tương tự, ta có:

 

b^2 = 5 - (1/2)sqrt(25 - n)

Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:

 

25 - n = 4k^2

Với k là một số nguyên. Từ đó, ta suy ra:

 

n = 25 - 4k^2

Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.

Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.