K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:

  • a + 961 = (a - 1) + 37*26 chia hết cho 37
  • a + 961 = (a - 14) + 39*25 chia hết cho 39
  • Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.

ĐS: a = 482.

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

vậy k =482

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

14 tháng 8 2017

B=13

C=14

D=83

A=118

14 tháng 8 2017

+)b=(64-12)/4=13

+)c=(83-13)/5=13

+)b=14*5+13=83

+)a=17*6+16=118