Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)
\(=\frac{2.\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)
\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )
\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )
Vậy \(n\in\left\{2;46\right\}.\)
b. Gọi ước chung của 8n + 193 và 4n + 3 là d
Ta có:
\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)
\(\Leftrightarrow187⋮d\)
\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)
Thử:
\(n=156\Rightarrow M=\frac{77}{19}\)
\(n=165\Rightarrow M=\frac{89}{39}\)
\(n=167\Rightarrow M=\frac{139}{61}.\)
\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)
Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)
\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)
b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187
Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)
Ta có: trong khoảng từ 603 -> 683 chỉ có:
+ 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n
+ 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n
+ không có số nào chia hết cho 187
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3
a) Ta có: \(7^x+12^y=50\)
\(7^x\) luôn lẻ với mọi x là số tự nhiên , \(50\) là số chẵn mà \(7^x+12^y=50\)
=> \(12^y\) là số lẻ mà 12 là số chẵn
=> \(y=0\)
Với \(y=0\) => \(7^x+1=50\)
=> \(7^x=49=7^2\)
=> \(x=2\)
b) \(\frac{18n+3}{21n+7}\) có thể rút gọn
=> \(21n+7\ne0\)
=> \(21n\ne-7\)
=> \(-3n\ne0\)
=> \(n\ne0\)mà n là số tự nhiên
Vậy để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được khi n là số tự nhiên khác 0
a) \(A=\frac{8n+193}{4n+3}\)
\(A=\frac{8n+6+187}{4n+3}\)
\(A=2+\frac{187}{4n+3}\)
Để A là số tự nhiên thì \(187⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\text{±}1;\text{±}11;\text{±}17;\text{±}187\right\}\)
mà A là số tự nhiên
\(4n+3\in\left\{1;11;17;187\right\}\)
Ta có bảng sau:
4n+3 | 1 | 11 | 17 | 187 |
4n | -2 | 8 | 14 | 184 |
n | -0,5 | 2 | 3,5 | 46 |
Vậy \(n\in\left\{-0,5;2;3,5;46\right\}\)
mà n là số tự nhiên
\(\Rightarrow n\in\left\{2;46\right\}\)
Câu b, c thì chịu. ☺