K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

 bang 3 nha bsn

hok ~ tot

20 tháng 2 2020

Giả sử số tự nhiên a có n chữ số \(a=\overline{a_1a_2a_3...a_n}\)

Theo đề bài, ta có: \(\overline{2004a_1a_2a_3...a_n}⋮2018\)

\(\Rightarrow2004.10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

\(\Rightarrow2003.10^n+10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

Vì \(2003.10^n⋮2003\)nên \(10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

Dễ thấy \(10^n+\overline{a_1a_2a_3...a_n}>0\)nên \(10^n+\overline{a_1a_2a_3...a_n}\ne0\)

\(\Rightarrow10^n+\overline{a_1a_2a_3...a_n}⋮2003\)khi và chỉ khi \(10^n+\overline{a_1a_2a_3...a_n}\ge2003\)

\(\Rightarrow n\ge4\)

Để a nhỏ nhất thì n nhỏ nhất, khi đó n = 4

\(\Rightarrow10^4+\overline{a_1a_2a_3a_4}⋮2003\)

\(\Rightarrow1988+8012+\overline{a_1a_2a_3a_4}⋮2003\)

Vì \(8012⋮2003\)nên \(1988+\overline{a_1a_2a_3a_4}⋮2003\)

\(\Rightarrow1988+\overline{a_1a_2a_3a_4}=2003k\left(k\inℕ^∗\right)\)

\(\Rightarrow\overline{a_1a_2a_3a_4}=2003k-1988\ge1000\)

\(\Rightarrow2003k\ge2988\Rightarrow k\ge1,49176...\Rightarrow k\ge2\)(vì \(k\inℕ^∗\))

Để a nhỏ nhất thì k cũng nhỏ nhất, khi đó k = 2

\(\Rightarrow\overline{a_1a_2a_3a_4}=2003.2-1988=2018\)

Vậy số tự nhiên a nhỏ nhất cần tìm là 2018.

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
Giả sử số $a$ có $n$ chữ số. Khi đó:
$\overline{2023a}=2023.10^n+a=2022.10^n+10^n+a$

Để $\overline{2023a}\vdots 2022$ thì $10^n+a\vdots 2022$

$\Rightarrow 10^n+a\geq 2022$

Nếu $a$ có 3 chữ số: $10^n+a\leq 10^3+999=1999$ (không thỏa mãn) (vô lý)

$\Rightarrow a$ phải có từ 4 chữ số trở lên

$\Rightarrow n\geq 4$.

Đặt $10^n+a=2022k$ với $k$ tự nhiên. Do $a$ có ít nhất 4 chữ số nên:
$2022k=10^n+a\geq 10^4+1000=11000$

$\Rightarrow k\geq 6$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất, Suy ra $k=6$

$10^n+a=2022.6=12132$

$\Rightarrow n=4; a=2132$

Vậy số cần tìm là $2132$

27 tháng 10 2024

Aaaaaaaaaaaaa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Văn tùm lum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sod

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aasaaaaa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jqka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

B

B

B

B

Bb

 

Hhhh

H

H

Gf

Fgg

 

F

.r

F

F

Ffff

Z

 

Fgggg

 

 

 

F

F

F

F

F

Ffff

G

 

 

Gf

G

 

G

G

 

Gg

 

G

G

G

 

G

G

G

G

 

 

 

 

 

 

 

G

Gg

G

 

 

 

 

 

G

G

G

 

Fgggg

G

 

 

 

Yyyyyyy

 

 

 

 

 

 

Yâmte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

F

F

Gf

F

F

T

Ffff

 

 

 

 

 

 

 

23 tháng 2 2018

Tôi đoán mò ra 132 nhưng làm thế nao ra đc nó giúp tớ nhé cam on cac ban

9 tháng 4 2018

111 nhé

11 tháng 3 2018

Theo tớ thì số cần tìm chia 5 dư 4 nên có tận cùng là 4 hoặc 9! mà số lại chia 2 dư 1 nên là số lẻ --> có tận cùng là 9. 
gọi số cần tìm là a9 đi bạn. thì 
a9 chia 3 dư 2 nên a chia 3 dư 2 (do a+9 chia 3 sẽ dư 2 mà 9 chia hết cho 3) 
như thế a có thể bằng 2,5,8,11.... 
thử dần vào nà: 29 chia 4 dư 1 bị loại rồi 
59 chia 4 dư 3 ( 56 : 4 = 16) --> ok 
59 chia 6 dư 5 ( 54 chia 6 được 9 mà)-->được rồi nè! 
chúc bạn may mắn!

13 tháng 11 2015

1,40 số

2,100008

3,10;12;15;30;60;

4,n=1;5

5,450;560;460;405;504;506;605;406;604

làm nốt đi