K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

Theo đề ra, ta có:

\(\hept{\begin{cases}\left(a+7\right)⋮28\\\left(a+7\right)⋮24\\\left(a+7\right)⋮16\end{cases}}\Rightarrow\left(a+7\right)\in BC\left(28;24;16\right)\)

Ta có:

\(28=2^2.7\)

\(24=2^3.3\)

\(16=2^4\)

\(\Rightarrow BCNN\left(16;18;24\right)=2^4.3.7=336\)

\(\Rightarrow\left(a+7\right)=BC\left(16;18;24\right)=\left\{0;336;672;1008;...\right\}\)

Mà đề ra a là số nhỏ nhất có bốn chữ số

\(a+7=1008\Rightarrow a=1008-7\Rightarrow a=1001\)

4 tháng 12 2016

a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5

=>n+5 chia hết cho 11;17;29

Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)

Vì 11;17;29 nguyên tố cùng nhau

=>n+5= BCNN(11;17;29)=11x17x29=5423

=>n=5423-5=5418

b) Gọi số tự nhiên cần tìm là x

x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5

=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)

Vì 13;19 nguyên tố cùng nhau

=> x+5=BCNN(13;19)=13x19=247

=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}

Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482

x=1482-5

x=1477

25 tháng 4 2019

3 tháng 12 2015

chia a cho 17 thì dư 8 =>a+9 chia hết cho 17

chia a cho 25 thì dư 16 =>a+9 chia hết cho 25

=>a+9  chia hết cho 17 và 25

=>a+9 thuộc BC(17;25)

17=17

25=52

=>BCNN(17;25)=17.52=425

=>a+9 thuộc B(425)={0;425;..}

=>a thuộc {-9;416;....}

vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416

3 tháng 12 2015

chia a cho 17 thì dư 8 thì suy ra a+9 chia hết cho 17

chia a cho 25 thì dư 16 suy ra a+9 chia hết cho 25

suy raa+9  chia hết cho 17 và 25

suy raa+9 thuộc BC(17;25)

17 = 17 vì 17 là số nguyên tố

25 = 52

suy ra BCNN(17;25)=17.52=425

suy ra a+9 thuộc B(425)={0;425;..}

suy ra a thuộc {-9;416;....}

vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416

vậy a = 416 

**** cho mình nhé

2 tháng 3 2016

câu 9: 108999

7 tháng 12 2015

a +8 chia hết cho 24 và 27

a nhỏ nhất

=> a+8 =BCNN(24;27) =216

=> a =216 -8 

a =208

 

 

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
25 tháng 3 2018