Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
đặt a<b
Coi a=12k
b=12h (k,h thuộc N*;k<h)
Có:
a+b=12k+12h=12(k+h)=96
=>k+h=96:12=8
Có:
8=1+7=2+6=3+5=4+4
Vì k<h nên (k;h) thuộc {(1;7);(2;6);(3;5)}
=> (a,b) thuộc {(12;84);(24;72);(36;60)}
a.ƯCLN(a,b)=12 ⟹a=12.m
b=12.n với m,n N* và (m,n)=1
a+b=120⟹12.m+12.n=120⟹12.(m+n)=120
⟹m+n=120:12=10
m 1 9 3 7
n 9 1 7 3
a 12 108 36 84
b 12 108 36 84
Bài 1 :
Giả sử a > b
ƯCLN(a;b) = 6 => a = 6m ; b = 6n (m > n ; n \(\ne\) ()
Ta có : a + b = 6m + 6n = 6 . (m + n) = 36
=> m + n = 6
Vì m > n ; n \(\ne\) 0 nên (m ; n) \(\in\) {(5;1) ; (4;2) ; (3;3}
=> (a;b) \(\in\) {(30;6) ; (24;12) ; (18;18)}
Bài 2 : Tương tự
Gọi a=6h;b=6k thì a+b=6(h+k)=36
=> h+k=6
Có bảng
h | 1 | 5 | 2 | 4 | 3 |
k | 5 | 1 | 4 | 2 | 3 |
a | 6 | 30 | 12 | 24 | 18 |
b | 30 | 6 | 24 | 12 | 18 |
(cột này thừa nha) |
Thấy chỉ có cặp 30;6 và 6;30 thỏa mãn