Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{1}{2}\) − \(\frac{1}{12}\)< ... < \(\frac{1}{48}\)−( \(\frac{-5}{48}\))
=> \(\frac{5}{12}\)< ... <\(\frac{1}{8}\)
=> 0,41(6) < ... < 0,125
Vì 0,41﴾6﴿>0,125
=>Không có số nguyên nào thích hợp để điền vào chỗ chấm.
\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)
\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1}{2009}\)
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{50}{101}\)
b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)
\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)
=1/2x(1/1.3+1/3.5+...+1/99.101)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=1/2.(1-1/101)
=1/2.100/101
=50/101
chúc bạn học tốt