Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ số tận cùng của số ( 164 )10 . ( 325 )4 là chữ số 0 .
\(\left(16^4\right)^{10}.\left(3^{25}\right)^4=\left(...6\right)^{10}.\left(3^4\right)^{12}.3\)\(=\left(...6\right).\left[\left(...1\right).3\right]\)\(\left(...6\right).\left(...3\right)=\left(...8\right)\)
Vậy tích này có tận cùng bằng 8
Vì: \(2^4\)có tận cùng là đặc biệt
Ta có: \(2^{2013}=2^{4.503+1}=\left(2^4\right)^{503}.2=\overline{....6}^{503}.2=\overline{....2}\)
1/
$A=2^2+2^3+2^4+....+2^{100}$
$2A=2^3+2^4+2^5+....+2^{101}$
$2A-A=2^{101}-2^2$
$A=2^{101}-4$
2.
$2^2\equiv -1\pmod 5$
$\Rightarrow 2^{2013}=(2^2)^{1006}.2\equiv (-1)^{1006}.2\equiv 2\pmod 5$
$\Rightarrow (2^{2013})^2\equiv 2^2\equiv 4\pmod 5$
$\Rightarrow (2^{2013})^2$ có tận cùng là 4 hoặc 9.
Mà $(2^{2013})^2$ chẵn nên $(2^{2013})^2$ tận cùng là 4.