Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi z= a + bi \(\left(a,b\in R\right)\)
(2+i)(a+bi)=4-3i
\(\Leftrightarrow\) \(2a-b+\left(a+2b\right)i=4-3i\)
\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)
\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)
\(z=1-2i\)
w= i(1-2i) + 2( 1+ 2i) = 4 + 5i
Gọi \(z=a+bi\left(a,b\in R\right)\)
\(\left(2+i\right)\left(a+bi=4-3i\right)\)
\(\Leftrightarrow2a-b+\left(a+2b\right)i=4-3i\)
\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)
\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)
\(z=1-2i\)
\(w=i\left(1-2i\right)+2\left(1+2i\right)=4+5i\)
Điều kiện \(z\ne0;\left|z\right|\ne1\)
\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)
\(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)
\(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)
Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :
\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)
\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)
\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)
Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện
Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện
Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)
\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)
\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)
vậy .............................................................................................................
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)
\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)
\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\) và \(a^2-b^2=3\)
\(\Rightarrow a^2\) và \(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)
\(\Rightarrow\) \(modul\) của số phức \(z\) là \(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)
vậy ...................................................................................................................
hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi
Cho số phức z thỏa mãn \(\left(1+i\right)z+2\overline{z}=2\)
Tính môdun của số phức \(\omega=z+2+3i\)
Giả sử: \(z=x+yi\) \((x;y\in|R)\)
Ta có: \((1+i)z+2\overline{z}=2\)
<=> \((1+i)(x+yi)+2(x-yi)=2\)
<=> \(x+yi+xi-y+2x-2yi-2=0\)
<=> \((3x-y-2)+(x-y)i=0\)
<=> \(\begin{align} \begin{cases} 3x-y&=2\\ x-y&=0 \end{cases} \end{align}\)
<=> \(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)
=> \(z=1+i\)
Ta có: \(\omega=z+2+3i \)
\(=1+i+2+3i\)
\(=3+4i\)
=> \(|\omega|=\sqrt{3^2+4^2}=5\)
Đặt \(z=a+bi\left(a,b\in R\right)\)
Theo bài ta có : \(\begin{cases}3a-b=2\\a-b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) nên \(z=1+i\)
Khi đó \(\omega=z+2+3i=1+i+2+3i=3+4i\)
Vậy \(\left|\omega\right|=\sqrt{3^2+4^2}=5\)
Giả sử: \(z=x+yi (x;y\in |R)\)
Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)
<=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)
<=>\(2x+2yi+2=3x-3yi+5i-i^2\)
<=>\((3x-2x+1-2)+(5-3y-2y)i=0\)
<=>\((x-1)+(5-5y)i=0\)
<=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)
<=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)
Suy ra: z=1+i =>|z|=\(\sqrt{2}\)
Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :
\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)
\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)
Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i
→a+bi +2ai -2b +i +2ai +2b=1+3i (i2= -1)
→ a+ (4a+b+1)i = 1+3i
→\(\begin{cases}a=1\\4a+b+1=3\end{cases}\) → a=1 , b=-2 → modum : \(\left|Z\right|\)=\(\sqrt{5}\)
Giải:
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Theo bài ra ta có:
\(\left\{\begin{matrix} |(a-2)+i(b-1)|=\sqrt{10}\\ z\overline{z}=|z|^2=a^2+b^2=25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a-2)^2+(b-1)^2=10\\ a^2+b^2=25\end{matrix}\right.\)
\(\left\{\begin{matrix} 2a+b=10\\ a^2+b^2=25\end{matrix}\right.\Rightarrow a^2+(10-2a)^2=25\rightarrow a=5\) hoặc \(a=3\)
\(\Rightarrow b=0;4\)
Vậy \(z\in \left \{5,3+4i\right\}\)
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(i\overline{z}+3+i\right)\left(iz+1\right)=0\)
\(\Leftrightarrow\left(i\left(a-bi\right)+3+i\right)\left(i\left(a+bi\right)+1\right)=0\)
\(\Leftrightarrow\left(ai+b+3+i\right)\left(ai-b+1\right)=0\)
\(\Leftrightarrow-a^2-abi+ai+abi-b^2+b+3ai-3b+3-a-bi+i=0\)
\(\Leftrightarrow\left(-a^2-b^2-2b-a\right)+\left(4a-b\right)i=-3-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a^2-b^2-2b-a=-3\\4a-b=-1\end{matrix}\right.\) giải phương trình theo cách thế ta có
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow z=-1-3i;z=i\)
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2-\overline{z}=0\Leftrightarrow\left(a+bi\right)^2-\left(a-bi\right)=0\)
\(\Leftrightarrow a^2-b^2+2abi=a-bi\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=a\\2ab=-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=\pm\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow z=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i;z=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i\)