Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề suy ra: \(y=\frac{x^2-24}{x+5}=\frac{x^2-25+1}{x+5}=\frac{\left(x+5\right)\left(x-5\right)+1}{x+5}=x-5+\frac{1}{x+5}\)
Để \(x,y\inℤ\)thì \(\frac{1}{x+5}\inℤ\Leftrightarrow1⋮\left(x+5\right)\Leftrightarrow x+5=\pm1\Leftrightarrow\orbr{\begin{cases}x=-4\Rightarrow y=-8\\x=-6\Rightarrow y=-12\end{cases}}\)
Vậy pt có 2 nghiệm là (-4;-8) và (-6;-12)
X(y3 + 2y + 1) = 32y
Vì (y3 + 2y + 1; y) = 1 nen 32 \(⋮\)chia hết cho y3 + 2y + 1.
Đến đây tự giải nhé.
ủa bạn cái đoạn \(\left(y^3+2y+1;y\right)=1\) dấu chấm phẩy “;” nghĩa là sao ?
Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.
mà \(2x+1\)lẻ
\(\Rightarrow\)\(5y\) là số chẵn
\(\Rightarrow\)\(y\) là số chắn
Có \(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn
\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ
\(\Rightarrow\)\(x=\pm1\).
Với \(x=1\)ta có:
\(\left(5y+3\right)\left(y+3\right)=65\)
suy ra \(y=2\).
Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn.
Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ
<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ
=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
\(\left(xy-1\right)|\left(x^3+x\right)\Rightarrow\left(xy-1\right)|x\left(x^2+1\right)\)mà \(\left(x,xy-1\right)=1\)nên \(\left(xy-1\right)|\left(x^2+1\right)\)
\(\Leftrightarrow\left(xy-1\right)|\left(x^2+1+xy-1\right)\Leftrightarrow\left(xy-1\right)|\left(x+y\right)\).
Đặt \(x+y=z\left(xy-1\right)\Leftrightarrow x+y+z=xyz\).
Không mất tính tổng quát, giả sử \(x\ge y\ge z\)thì \(xyz=x+y+z\le3x\Leftrightarrow3\ge yz\ge z^2\Rightarrow z=1\Rightarrow y\in\left\{1;2;3\right\}\).
Thử từng trường hợp của \(y\)chỉ thấy \(y=2\)có nghiệm \(x=3\)thỏa mãn.
Vậy phương trình ban đầu có các nghiệm là: \(\left(1,3\right),\left(1,2\right),\left(2,3\right),\left(2,1\right),\left(3,2\right),\left(3,1\right)\).
Câu trả lời hay nhất: x² - 4x +y - 6√(y) + 13 = 0
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0
<=> (x-2)^2 + (√(y) -3)^2 = 0
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0
<=> (xy² - 8y)^2 + (2y - x)^2 = 0
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2
c/
x² - x²y - y + 8x + 7 = 0
<=> x²(1-y) + 8x - y + 7 = 0
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2
để pt có nghiệm thì delta' >=0
<=> (y-4)^2 <=25
<=> -1<= y <=9
=> max y = 9
=> x = 3/2 hoặc x = -1/2
3/
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được
x^(n+1) - 6x^n + x^(n-1) = 0
với S(n) = x1ⁿ +x2ⁿ ta có:
S(n+1) - 6S(n) + S(n-1) = 0
<=> S(n+1) = 6S(n) - S(n-1)
với S(1) = 6
S(2) = 22
=> S(3) nguyên
=> S(4) nguyên
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1))
ta có:
S(1) không chia hết cho 5
S(2) ..............................
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5
S(n) và S(n-1) ko chia hết cho 5 =>
S(n+1) = S(n) + S(n-1) ko chia hết cho 5
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
1-y\geq0\\
3+y\geq0
\end{cases}\\
\begin{cases}
1-y\leq0\\
3+y\leq0
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
y\leq1\\
y\geq-3
\end{cases}\\
\begin{cases}
y\geq1\text{(Vô lí)}\\
y\leq-3\text{(Vô lí)}
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha