K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
$x^2+4x-y^2=0$

$\Leftrightarrow (x+2)^2-4-y^2=0$

$\Leftrightarrow (x+2)^2-y^2=4$

$\Leftrightarrow (x+2-y)(x+2+y)=4=2.2=(-2)(-2)$

Đến đây là dạng pt tích cơ bản rồi, bạn chỉ cần xét các trường hợp cụ thể để tìm ra $x,y$ thôi.

13 tháng 1 2018

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y
 

 

25 tháng 5 2017

\(\left(x+y\right)\left(4x^2-4xy+y^2\right)=7\)

mik ngại vít,,,bạn tự lm nốt nha

25 tháng 5 2017

4x3 + y3 - 3xy2 - 7 = 0

4x3 - 4x2y + 4x2y + xy2 - 4xy2 + y3 = 7

(4x3 - 4x2y + xy2) + (4x2y - 4xy2 + y3) = 7

x(4x2 - 4xy + y2) + y(4x2 - 4xy + y2) = 7

(x + y)(4x2 - 4xy + y2) = 7

(x + y).(2x - y)2 = 7

=> .....

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...