K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)

\(\Rightarrow\frac{20+xy}{x}=\frac{1}{2}\)

\(\Rightarrow2xy-x=-40\)

\(\Rightarrow x\left(2y-1\right)=40\)

=> x ; 2y - 1 thuộc Ư(40)

Dễ thấy 2y - 1 lẻ

(+) \(\begin{cases}2y-1=1\\x=-40\end{cases}\)\(\Rightarrow\begin{cases}y=1\\x=-40\end{cases}\)

(+) \(\begin{cases}2y-1=-1\\x=40\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x=40\end{cases}\)

(+) \(\begin{cases}2y-1=5\\x=-8\end{cases}\)\(\Rightarrow\begin{cases}y=3\\x=-8\end{cases}\)

(+) \(\begin{cases}2y-1=-5\\x=8\end{cases}\)\(\Rightarrow\begin{cases}y=-2\\x=8\end{cases}\)

Vậy .............

9 tháng 11 2016

Rút x theo y( hoặc y theo x) xem x như một hàm fx. Dùng chức năng table trong máy tính. Cho y chạy. Chọn giác trị của y làm x nguyên và giá trị x tương ứng

30 tháng 3 2016

ta có x-y=7 =>x=7+y
theo đề ta có pt
1/3(7+y)=1/4y
=> 7/3+y/3=y/4
=>28+4y=3y
=>4y-3y=-28
=>y=-28
vậy x=7+y=7+(-28)=-21

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

NV
30 tháng 5 2019

a/ \(y'=18x-42x^5+7x^4=0\)

\(\Leftrightarrow x\left(42x^4-7x^3-18\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\42x^4-7x^3-18=0\end{matrix}\right.\)

Nói chung là ko giải được pt dưới nên nhường thầy giáo ra đề tự xử

b/ \(y'=\frac{4}{\left(x+2\right)^2}>0\) \(\forall x\ne-2\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-2\right)\)\(\left(-2;+\infty\right)\)

c/ \(y'=\frac{\left(4x+3\right)\left(2x+1\right)-2\left(2x^2+3x\right)}{\left(2x+1\right)^2}=\frac{4x^2+4x+3}{\left(2x+1\right)^2}=\frac{\left(2x+1\right)^2+2}{\left(2x+1\right)^2}>0\) \(\forall x\ne-\frac{1}{2}\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\)\(\left(-\frac{1}{2};+\infty\right)\)

d/ \(y'=\frac{x^2-2x-\left(2x-2\right)\left(x-1\right)}{\left(x^2-2x\right)^2}=\frac{-x^2+2x-2}{\left(x^2-2x\right)^2}=\frac{-\left(x-1\right)^2-1}{\left(x^2-2x\right)^2}< 0\) \(\forall x\ne\left\{0;2\right\}\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;0\right)\)\(\left(0;2\right)\)\(\left(2;+\infty\right)\)

e/ \(y'=\frac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\frac{1-x}{\sqrt{2x-x^2}}=0\Rightarrow x=1\)

\(y'>0\) khi \(0< x< 1\); \(y'< 0\) khi \(1< x< 2\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)

14 tháng 5 2016

a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)

Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)

Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)

 

b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)

Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)

                                      \(\Leftrightarrow-3< x< x\)

Vậy tập xác định là \(D=\left(-3;2\right)\)

17 tháng 12 2017

Cách giải

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.

26 tháng 3 2016

a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)

                  \(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)

b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)

Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

29 tháng 9 2016

Giải:

Ta có: \(\frac{x-2}{5}=\frac{2x-3}{4}\)

\(\Rightarrow\left(x-2\right).4=5.\left(2x-3\right)\)

\(\Rightarrow4x-8=10x-15\)

\(\Rightarrow4x-10x=8-15\)

\(\Rightarrow-6x=-7\)

\(\Rightarrow x=\frac{7}{6}\)

Vậy \(x=\frac{7}{6}\)

30 tháng 9 2016

Giải :

Ta có : \(\frac{x-2}{5}=\frac{2x-3}{4}\)

\(\Rightarrow\left(x-2\right),4=5,\left(2x-3\right)\)

\(\Rightarrow4x-8=10x-15\)

\(\Rightarrow4x-10x=8-15\)

\(\Rightarrow-6x=-7\)

\(\Rightarrow x=\frac{7}{6}\)

Vậy \(x\) là \(\frac{7}{6}\)