Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit
\(a)\)\(xy-x-y=1\)
\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)
\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)
Lập bảng :
\(x-1\) | \(1\) | \(2\) | \(-1\) | \(-2\) |
\(y-1\) | \(2\) | \(1\) | \(-2\) | \(-1\) |
\(x\) | \(2\) | \(3\) | \(0\) | \(-1\) |
\(y\) | \(3\) | \(2\) | \(-1\) | \(0\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~
\(b)\)\(xy-2x-2y=1\)
\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)
\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)
Lập bảng :
\(x-2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(7\) | \(1\) | \(-3\) |
\(y\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)
Chúc bạn học tốt ~
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
Ta có
\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-\left(3x-6\right)=2\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=2\)
\(\Leftrightarrow\left(x+2\right)\left(y+3\right)=2\)
(+) với \(\begin{cases}x+2=1\\y+3=2\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=-1\end{cases}\)
(+) với \(\begin{cases}x+2=-1\\y+3=-2\end{cases}\)\(\Rightarrow\begin{cases}x=-3\\y=-5\end{cases}\)
(+) với \(\begin{cases}x+2=2\\y+3=1\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=-2\end{cases}\)
\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=-2\)
\(\Leftrightarrow\left(x+2\right)\left(3-y\right)=2\)
Tới đây phân tích 2 = 1.2 = ...
Ghép cặp và tính.
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)