K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Để P nguyên thì x - 2 chia hết x - 1

=> x - 1 - 1 chia hết cho x - 1

=> 1 chia hết cho x - 1

=> x - 1 thuộc Ư(1) = {-1;1}

=> x = {0;2}

Vậy x = {0;2}

6 tháng 10 2017

x là số nguyên

Mà x - 2 : x - 1 là số nguyên

Vậy ( x - 1 - 1) \(⋮\)( x - 1 )

=> x - 1\(\in\)Ư(1 ) = { 1;-1}

=> x \(\in\){ 2;0 }

18 tháng 6 2016

\(P=\frac{x-2}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)

P nguyên <=>3 chia hết cho x+1 <=>x+1 là Ư(3)

Mà Ư(3)={+-1;+-3}

Ta có bảng sau:

x+11-13-3
x0-22-4

Vậy x={-4;-2;0;2} thì P nguyên

18 tháng 6 2016

        y đâu rồi bạn?

16 tháng 2 2016

hả bài này sai đề rùi cụ ơi

16 tháng 2 2016

quên mất thiếu đoạn cuối 'là số nguyên' 

17 tháng 2 2016

Đế P là số nguyên thì x-2 chia hết cho x+1

=>x+1-3 chia hết cho x+1

Mà x+1 chia hết cho x+1

=> 3 chia hết cho x+1

=>x+1\(\in\)Ư(3)={-3,-1,1,3}

=>x\(\in\){-4,-2,0,2}

17 tháng 2 2016

{-4;-2;0;2} , ủng hộ mk nha

7 tháng 9 2016

Vô số nhiều lắm ! 

7 tháng 9 2016

Để \(\frac{1}{x}\in Z\)thì \(x\inƯ\left(1\right)=\left\{1;-1\right\}\)

11 tháng 3 2018

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

24 tháng 6 2016

a)\(\frac{x-1}{5}=\frac{3}{y+4}\Rightarrow\left(x-1\right)\left(y+4\right)=15\)

=>x-1 và y+4 thuộc Ư(15)={±1;±3;±5;±15}

Tới đây bn tự xét nhé nó hơi dài nên mk ngại làm

b)Để P thuộc Z

=>x-2 chia hết x+1

=>x+1-3 chia hết x+1

=>3 chia hết x+1

=>x+1 thuộc Ư(3)={1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên