Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)
A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên
3 ⋮ x - 2
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên
Ta có : C = \(\frac{2x-4}{x+3}=\frac{2x+6-10}{x+3}=\frac{2\left(x+3\right)-10}{x+3}=2-\frac{10}{x+3}\)
Để C nguyên thì : 10 chia hết cho x + 3
=> x + 3 thuộc Ư(10) = {-10;-5;-2;-1;1;2;5;10}
=> x thuộc {-13;-8;-5;-4;-2;-1;2;7}
a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)
Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)
=> \(-5⋮x-5\)
=> x - 5 \(\in\)Ư(-5)
=> \(x-5\in\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{6;11;4;0\right\}\)
Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ
b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)
Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)
=> \(13⋮x-5\)
=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)
=> \(x\in\left\{6;18;4;-8\right\}\)
Vậy khi \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ
c) Ta có C = \(\frac{x-3}{2x}\)
=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)
Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)
Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì C là số hữu tỉ
Để \(\frac{13}{2x^2+5}\)nhận giá trị nguyên thì
Vì \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\)
\(\Rightarrow2x^2+5=13\)
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Để \(\frac{2x}{x-2}\)có giá trị nguyên thì :
\(2x⋮x+2\)
\(2x+4-4⋮x+2\)
\(2.\left(x+2\right)-4⋮x+2\)
vì \(2.\left(x+2\right)⋮x+2\)
\(\Rightarrow-4⋮x+2\)
\(\Rightarrow x+2\inƯC\left(-4\right)=\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow x=\left\{-3;-4;-6;-1;0;2\right\}\)
Vậy để số hữu tỉ \(\frac{2x}{x-2}\)có giá trị nguyên thì \(x=\left\{-3;-4;-6;-1;0;2\right\}\)