Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)^2-5\ge-5\)
Dấu ''='' xảy ra <=> x = -2
Vậy GTNN A là -5 <=> x = -2
\(A=\left(x+2\right)^2-5\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow\left(x+2\right)^2-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy \(minA=-5\)\(\Leftrightarrow x=-2\)
A= \(\left(x+2\right)^2-13\)
Ta có \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-13\ge-13\forall x\)
\(\Rightarrow A\ge-13\forall x\)
Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy Min A = -13 \(\Leftrightarrow x=-2\)
@@ Học tốt
Chiyuki Fujito
Tái bút : Đây là cách trình bày của lp 7
Bài 1:
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: |x + 4| \(\ge\)0 với mọi x
=> B = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4
Vây GTNN của B = 2017 tại x = -4
Bài 2:
a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x
=> P = 2010 - (x + 1)2016 \(\ge\)2010
Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1
Vậy GTLN của P = 2010 tại x = -1
b, Ta có: |3 - x| \(\ge\)0 với mọi x
=> Q = 2010 - |3 - x| \(\ge\)2010
Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3
Vậy GTLN của Q = 2010 tại x = 3
\(A=\left(x+2\right)^2-13\)
Có \(\left(x+2\right)^2\ge0\)
\(\Rightarrow A\ge0+-13=-13\)
Vậy MInA = -13 <=> x = -2
Có ( x+2011)^2 lon hon hoac bang 0
=> (x+ 2011)^2 -2012 lon hon hoac bang -2012
=>GTNN là -2012 hay x= -2011
Tìm số nguyên x để:
A=(x+2)2 -13 có GTNN
Vì (x+2)2 \(\ge\)0 \(\forall\)x
\(\Rightarrow\)(x+2)2 -13 \(\ge\)-13
Dấu "=" xảy ra:
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=0-2
\(\Leftrightarrow\)x=-2
Vậy Amin=-13 \(\Leftrightarrow\)x=-2