Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100=25 .4 =5^2.4
5^2019:( 5^2013-5^2.4.5^2010)=5^2019: ( 5^2013-5^2012.4)=5^2019: (5^2012.(5-4))
=5^2019:5^2012=5^7(=78125)
Học tốt
5x = 52019 : (52013 -100*52010)
<=> 5x = 52019 : (52010 .(53-100))
<=> 5x = 52019 : (52010 . 25)
<=> 5x = 52019 : 52012
<=> 5x = 57
<=> x = 7
Vậy x = 7
3xy+x+3y=4
⇒x(3y+1)+3y+1=5
⇒x(3y+1)+(3y+1)=5
⇒(3y+1)(x+1)=5
⇒x+1; 3y+1 ∈ ƯU(5)={±1;±5}
Mà 3y+1 là ước chia 3 dư 1 ⇒ 3y+1 ∈ {1,-5}
Lập bảng:
3xy+1 | 1 | -5 |
y | 0 | -2 |
x+1 | 5 | -1 |
x | 4 | -2 |
Vậy (x;y)=(-2;-2); (4;0)
Đề hơi sai mình sửa lại \(M=5^1+5^2+5^3+...+5^{100}\)
Suy ra : \(5.M=5^2+5^3+5^4+...+5^{100}+5^{101}\)
Nên \(5.M-M=5^{101}-5\)hay \(4.M=5^{101}-5\)
Khi đó \(4.m+5=5^{101}-5+5=5^{101}=5^n\)nên n = 101
Vậy n = 101
Ta có 5x + 5x + 1 + .... + 5x + 2015 = 52019 - 125
<=> 5x(1 + 5 + .... + 52015) = 52019 - 53
<=> 5x(1 + 5 + .... + 52015) = 53(52016 - 1) (1)
Đặt C = 1 + 5 + ... + 52015
=> 5C = 5 + 52 + ... + 52016
Khi đó 5C - C = (5 + 52 + ... + 52016) - (1 + 5 + ... + 52015)
=> 4C = 52016 - 1
=> C = \(\frac{5^{2016}-1}{4}\)
Khi đó (1) <=> \(5^x.\frac{5^{2016}-1}{4}=5^3\left(5^{2016}-1\right)\)
=> \(\frac{5^x}{4}=5^3\)
=> 5x = 500
=> không tìm được giá trị thỏa mãn của x
5x + 5x+1 + ... + 5x+2015 = 52019 - 125
<=> 5x( 1 + 5 + ... + 52015 ) = 52019 - 125
Đặt A = 1 + 5 + ... + 52015
=> 5A = 5 + 52 + ... + 52016
=> 5A - A = 4A
= 5 + 52 + ... + 52016 - ( 1 + 5 + ... + 52015 )
= 5 + 52 + ... + 52016 - 1 - 5 - ... + 52015
= 52016 - 1
=> A = \(\frac{5^{2016}-1}{4}\)
Thế vô ta được :
\(5^x\cdot\left(5^{2016}-1\right)\cdot\frac{1}{4}=5^3\left(5^{2016}-1\right)\)
<=> \(\frac{5^x}{4}=5^3\)
<=> 5x = 500
=> Không có giá trị của x thỏa mãn .-.
\(83-5\left(x+2\right)=5^2+2^2.2\)
\(\Rightarrow83-5\left(x+2\right)=25+4.2\)
\(\Rightarrow83-5\left(x+2\right)=25+8=33\)
\(\Rightarrow5\left(x+2\right)=83-33=50\)
\(\Rightarrow x+2=50:5=10\)
\(\Rightarrow x=10-2=8\)
\(2018-100\left(x+11\right)=2^{2019}:2^{2018}+4^2\)
\(\Rightarrow2018-100\left(x+11\right)=2+16=18\)
\(\Rightarrow100\left(x+11\right)=2018-18=2000\)
\(\Rightarrow x+11=2000:100=20\)
\(\Rightarrow x=20-11=9\)
Chúc em học tốt nhé!
Bài 2: Cho A = 3 + 32 + 33 +......+ 3100. Tìm số nguyên x, biết: 2A + 3 = 3|x|
\(A=3+3^2+3^3+....+3^{100}\)
=> \(3A=3.\left(3+3^2+3^3+....+3^{100}\right)\)
=> \(3A=3^2+3^3+3^4+.....+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+....+3^{100}\right)\)
\(\Rightarrow2A=3^2+3^3+3^4+....+3^{101}-3^1-3^2-3^3-...-3^{100}\)
\(\Rightarrow2A=3^{101}-3\)
Ta có: \(2A+3=3^{\left|x\right|}\)
=> \(\left(3^{101}-3\right)+3=3^{\left|x\right|}\)
=> \(3^{101}-3+3=3^{\left|x\right|}\)
=> \(3^{101}=3^{\left|x\right|}\)
=> 101 = |x|
=> \(\left[{}\begin{matrix}x=101\\x=-101\end{matrix}\right.\)
Vậy:..........................
P//s: Ko chắc!
câu 1:
câu a thì nhân 3 vào rồi lấy về trên cộng vế dưới ra 4A=?( tự triệt tiêu là thấy)
M = 5 + 52 + ... + 5100
5M = 52 + 53 + ... + 5101
5M - M = (52 + 53 + ... + 5101) - (5 + 52 + ... + 5100)
4M = 5101 - 5
4M + 5 = 5101 = 5n
=> n = 101
Vậy n = 101
\(\Leftrightarrow5^x=\dfrac{5^{2019}}{5^{2010}\cdot5^2}=5^7\)
hay x=7