K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Bài 1: Tìm x , biết :

a) ( x -1).(x-2)=0

<x-1=0

|

<x=0+1=1

-<x-2=0

-<x=0+2=2

Vậy x E {1;2}

b) (x-2).(x^2+1)=0

[<x-2=0

[<x=0+2=2

[>x2+1=0

   x2=0-1

   x2=1.(-1)

c) (x+`1).(x^2-4)=0

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bài 1:a) 5(x + 2) - 4(x - 3) = 17b) xy + 2x - y = 2c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)Bài 2:a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5c) Cho A = 3 - 32 + 33 - 34 + ... + 32017Chứng tỏ 4A - 3 là một số chính phương.Bài 3:a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)Chứng minh rằng...
Đọc tiếp

Bài 1:

a) 5(x + 2) - 4(x - 3) = 17

b) xy + 2x - y = 2

c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)

Bài 2:

a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)

b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5

c) Cho A = 3 - 32 + 33 - 34 + ... + 32017

Chứng tỏ 4A - 3 là một số chính phương.

Bài 3:

a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?

b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)

Chứng minh rằng B\(⋮\)9

Bài 4:

a) Nếu chia 3698 và 736 cho cùng một số tự nhiên thì ta được số dư tương ứng là 26 và 56. Hỏi số chia phải bằng bao nhiêu?

b) Chứng minh rằng: Nếu abcd\(⋮\)101 thì ab - cd = 0

Bài 5:

a) Trên đường thẳng xy lấy một điểm O và hai điểm M, N sao cho OM = 2 cm, ON = 3 cm. Vẽ các điểm A, B trên đường thẳng xy sao cho điểm M là trung điểm của đoạn thẳng OA, N là truung điểm của đoạn OB. Tính AB?

b) Trên tia Ox lấy 2 điểm B và C sao cho C nằm giữa O và B. Gọi M và N lần lượt là trung điểm của OC và CB. Tính MN biết MN + OB = 9 cm.

Bài 6:

Tìm ƯCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 (n\(\in\)N*)

Hạn nộp đáp án là trưa ngày 2/1/2018.

 

0
18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

21 tháng 4 2016

dễ mak 

chỉ cần nói cái dưới là u của cái trên

rồi tim ra 1 số chia hết cái dưới