Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-1}{3}\)<\(\frac{x}{6}\)<\(\frac{1}{6}\)
\(\frac{-2}{6}\)<\(\frac{x}{6}\)<\(\frac{1}{6}\)
=> \(x\)\(\in\)\(\left\{-1;0\right\}\)
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
Có: (x-1)(x+y)=-6
=> x-1; x+y E Ư(6) = {1; -1 ; 2; -2; 3; -3; 6; -6}
Lập bảng:
x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 2 | 0 | 3 | -1 | 4 | -2 | 7 | -5 |
x+y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
y | -8 | 6 | -6 | 4 | -6 | 4 | -8 | 6 |
Nx | chọn | chọn | chọn | chọn | chọn | chọn | chọn | chọn |
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
Trả lời:
P = \(\frac{3}{x-1}\)
a, đkxđ: \(x-1\ne0\Leftrightarrow x\ne1\)
b, Ta có: | x | = 6
=> x = 6 hoặc x = -6
Thay x = 6 vào P, ta được: \(P=\frac{3}{6-1}=\frac{3}{5}\)
Thay x = -6 vào P, ta được: \(P=\frac{3}{-6-1}=\frac{-3}{7}\)
c, Để P là số nguyên thì \(3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vậy \(x\in\left\{2;0;4;-2\right\}\)thì P là số nguyên
theo mik thì như này cơ:
=>-6/18<2x/18<-3/18
=>-6<2x<-3
=>2x thuộc {-5;-4}
=>x thuộc {-5/2;-2}
Vậy.....
Nhưng không sao bạn vẫn có ý đúng mà !!!!!!!!!!!!
\(\frac{x}{6}=\frac{-1}{y}\)
\(\Rightarrow x.y=6.\left(-1\right)\)
\(\Rightarrow x.y=-6\)
đến đây bn tự lập bảng là ra
6 ⋮ (\(x\) - 1)
\(x\) - 1 \(\in\) Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
Vì \(x\) \(\in\) P nên theo bảng trên ta có:
\(x\) \(\in\) {2; 3; 7}