Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có Vì 11 là số nguyên tố suy ra để có tổng là hợp số thì p=11
Vì nếu là số khác thì ko phải số nguyên tố tớ nghĩ thế
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta phải tìm số nguyên dương n để A là số nguyên tố. Với:
\(A=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{-\left(60^2-n^2\right)}{60-n}+\frac{60^2}{60-n}=-\left(60+n\right)+\frac{3600}{60-n}..\)
Muốn Alà số nguyên tố, trước hêt A phải là số nguyên . Như vậy (60 - n) phải là ước nguyên dương của 3600, suy ra n < 60 và 3600 : (60 - n) phải lớn hơn 60 + n (Để A dương) đồng thời phải thỏa mãn A là số nguyên tố. Ta kiểm tra lần lượt các giá trị của n là ước của 60 (sao cho 60 - n là ước của 3600)
- Trường hợp 1: n = 30 Ta có A = -90 + 3600 : 30 = 30 không là số nguyên tố
- Trường hợp 2: n = 15 Ta có A = -75 + 3600 : 45 = 5 là số nguyên tố . Vậy n = 15 là giá trị thích hợp
- Trường hợp 3: n = 12 Ta có A = - 72 + 3600 : 48 = 3 là số nguyên tố . Vậy n = 12 là giá tị thích hợp.
- Trường hợp 4: n = 6 , n = 5, n = 3, n =2 thì A không phải là số nguyên, loại. Trường hợp n = 1 thì A âm, loại.
Trả lời: Có hai giá trị của n thỏa mãn yêu cầu bài ra : n = 12 và n = 15