Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, nếu P=2 => P+2=2+2=4 (loại)
nếu P=3 => P+2=3+2=5
P+10 = 3+10=13 (thỏa mãn)
nếu P>3 => P= 3k+1 hoặc 3k+2
+ P= 3k+1=>P+2=3k+1+2=3k+3=3(k+1) (loại)
+ P=3k+2=>P+10=3k+2+10=3k+12=3(k+4) (loại)
vậy P=3 thỏa mãn bài toán
Giả sử p là SNt>3
p là SNT>3 thì p2 chia 3 dư 1
p2=3k+1
p2+14=3k+1+14=3k+15=3(k+5) chia hết cho 3 nên ko là SNt, loại
Vậy p=2 hoặc p=3
p=2 ko thỏa mãn
Vậy p=3
Thử lại 32+14=9+14=13, thỏa mãn là SNT
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
a) Xet p=2
=> p+6=8;p+8=10 ( vô lý )
xet p = 3
=> p+6=9 là hợp số loại
xet p=5
=> p+6=11 ; p+8=13 ; p+12=17 ; p+14=19 ( thỏa mãn )
xet p> 5
=> p=5k+1;5k+2;5k+3;5k+4
=> p+6 ; p+8 ; p+12 ;p+14 lần lượt là hợp số
=> p=5
b) xet p=2=> 2p+1=5
=> 4p+1=9 là hợp số
xet p=3
=> 2p+1=7
=> 4p+1=13 là số nguyên tố ( vô lý)
Vói mọi p ta có p^2 có 1 trong 2 dạng sau:
3k và 3k+1
Với p^2=3k, p là số nguyên tố=> p=3
Với p^2=3k+1=> p^2+14=3k+1+14=3k+15 chia hết cho 3
Mà 3k+15>3=> p^2+14 là hợp số ( vô lý)
Vậy p=3
Đưng trả lời linh tinh nhé