Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số nguyên tố n để 2n+7 và 5n+2 là hai số nguyên tố cùng nhau.
Plz help me
Đúng thì tick cho nhaaaa
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Gọi d =(A=2n+7; B=5n+17)
=. A ; B chia hết cho d
=>5A - 2B = 10n + 35 - 10n - 34 = 1 chia hết cho d
=> d =1
Vậy (A;B) =1
Gọi a =(A=2n+5; B=5n+12)
=. A ; B chia hết cho a
=>A5-B2=10n+25-10n+24=1chia hết cho a
=> a =1
Vậy (A;B) =1
1.1+3+5+...+(2n-1)=225
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225
<=> (2n.2n):4 = 225
<=> n2=225
=> n = 15 và n = -15
Vì n thuộc N* nên n = 15 thỏa mãn
Giải:
1+3+5+...+(2n-1)=225
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225
<=> (2n.2n):4 = 225
<=> n^2=225
suy ra n = 15 và n = -15
do n thuộc N* nên n = 15 thỏa mãn
gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
tích nha
Đặt : ( 2n + 7 ; 5n + 17 ) = d ( d thuộc N )
=> \(\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)
=> \(5\left(2n+7\right)-2\left(5n+17\right)⋮d\)
=> \(1⋮d\)
=> d = 1
Vậy ( 2n + 7 ; 5n + 17 ) = 1 ; hay 2n + 7 và 5n + 17 là hai số nguyên tố cùng nhau.
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt