Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
a) ta có: n+1=n-4+5
Để n+1 chia hết cho n-4 thì n-4+5 chia hết cho n-4
=> 5 chia hết cho n-4
Vì n nguyên => n-4 nguyên => n-4 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n-4 | -5 | -1 | 1 | 5 |
n | -1 | 3 | 5 | 9 |
b) ta có n-2=n+5-7
Để n-2 chia hết cho n+5 thì n+5-7 chia hết cho n+5
=>7 chia hết cho n+5
Vì n nguyên => n+5 nguyên
=> n+5 thuộc Ư(7)={-7;-1;1;7}
Ta có bảng
n+5 | -7 | -1 | 1 | 7 |
n | -12 | -6 | -4 | 2 |
a,do 5\(⋮\)n+1 => n+1\(\in\)Ư(5)
=> n+1\(\in\){\(\pm1\);\(\pm5\)}
=> n \(\in\){ -6,-2,0,4}
b,do n+4 \(⋮\)n+5 mà n+5\(⋮\)n+5
=> (n+5)-(n+4)\(⋮\)n+5
=> n+5-n-4\(⋮\)n+5
=> 1\(⋮\)n+5
=> n+5\(\in\){-1,1} => n\(\in\){-6,-4}
phần c tương tự phần b nhé bạn!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!