Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(4n-5)/(n-3)= (4(n-3)+7)/(n-3)=4+7/(n-3)
để 4n-5 chia hết cho n-3 thì kết quả của phép chia này phải là số nguyên=> 7/(n-3) phải là số nguyên.
7/(n-3) là số nguyên khi n-3 thuộc Ư(7).Mà Ư(7)=(-1;1;-7;7)
=>
TH1:n-3=-1=>n=-1+3=2
TH2:n-3=1=>n=1+3=4
TH3:n-3=-7=>n=-7+3=-4
TH4:n-3=7=>n=7+3=10
Vậy để 4n-5 chia hết cho n-3 thì n thuộc {2;4;-4;10)
4n-5 chia hết cho n-3
4n-12+17 chia hết cho n-3
4(n-3)+17 chia hết cho n-3
=>17 chia hết cho n-3 hay (n-3)EƯ(17)={1;-1;17;-17}
=>nE{4;2;20;-14}
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)
n - 6 chia hết cho n-4
=> n-4-2 chia hết cho n-4
=> 2 chia hết cho n-4
=> n - 4 \(\in\){ 1;-1;2;-2}
=> n \(\in\) { 5;3;6;2}
k nha
1, n + 2 thuộc Ư(3)
=>n + 2 thuộc {-1; 1; -3; 3}
=> n thuộc {-3; -1; -5; 1}
Vậy...
2, n - 6 chia hết cho n - 1
=> n - 1 - 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì n - 1 chia hết cho n - 1)
=> n - 1 thuộc Ư(5)
=> n - 2 thuộc {1; -1; 5; -5}
=> n thuộc {3; 1; 7; -3}
Vậy...
câu 1:
Ư(3)={-3;-1;1;3}
=> x+2 thuộc {-3;-1;1;3}
nếu x+2=-3 thì x=-5
nếu x+2=-1 thì x=-3
nếu x+2=1 thì x=-1
nếu x+2=3 thì x=1
=> x thuộc {-5;-3;-1;1}
câu 2 mk chịu
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
Ta có:
2n+1 chia hết cho n-3
<=> 2n+1-6+6 chia hết cho n-3
<=> 2n-6+7 chia hết cho n-3
Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3
=>n-3 thuộc Ư(7)={-1;1;-7;7}
Nếu n-3=-1 =>n=2(t/m)
Nếu n-3=1 =>n=4(t/m)
Nếu n-3=-7 =>n=-4(t/m)
Nếu n-3=7 =>n=10(t/m)
Vậy n= -4;2;4;10
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
4n - 5 chia hết cho n - 3
4n - 12 + 7 chia hết cho n - 3
Mà 4n - 12 chia hết cho n - 3
7 chia hết cho n - 3
n - 3 thuộc U(7) = {-7 ; -1 ; 1 ; 7}
n thuộc {-4 ; 2 ; 4 ; 10}
4n - 5 ⋮ n - 3 <=> 4.( n - 3 ) + 7 ⋮ n - 3
Vì 4.( n - 3 ) + 7 ⋮ n - 3 . Để 4.( n - 3 ) + 7 ⋮ n - 3 <=> 7 ⋮ n - 3
=> n - 3 ∈ Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
Ta có bảng sau :
Vậy n ∈ { - 4 ; 2 ; 4 ; 10 }