Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do n ∈ N gía trị nhỏ nhất
mà để 20n+13/4n+3 có giá trị nhỏ nhất và 20n>4n <=> n≠0 và 13> 3
=> n=0
b) \(\frac{4n-3}{3n-1}\)là số nguyên
\(\Rightarrow4n-3⋮3n-1\Rightarrow12n-9⋮3n-1\)
\(\Rightarrow4\left(3n-1\right)-5⋮3n-1\Rightarrow3n-1\inƯ\left(5\right)=[\pm1;\pm5]\)
+3n-1=1\(\Rightarrow\)n=\(\frac{2}{3}\)(loại)
+3n-1=-1\(\Rightarrow\)n=0(TM)
+3n-1=5\(\Rightarrow\)n=2(TM)
+3n-1=-5\(\Rightarrow\)n=\(\frac{-4}{3}\)(loại)
TM là thỏa mãn
Tìm n ∈ N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và 2n + 3 4n + 3 tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4) ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 2n + 4 = 2.(n +1) + 2 => d = ( n +1; 2) Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 => n + 1 không chia hết cho 2 => n+ 1 = 2k + 1 , k thuộc N => n = 2k Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
b, giả sử d = ( 7n +13 ; 2n + 4)
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)
2n + 4 = 2.(n +1) + 2
=> d = ( n +1; 2)
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1
=> n + 1 không chia hết cho 2
=> n+ 1 = 2k + 1 , k thuộc N
=> n = 2k
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1
2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d
=> ( 3n + 5 ) \(⋮\)d
( 4n + 7 ) \(⋮\)d
=> 4(3n + 5 ) \(⋮\)d
3 ( 4n + 7 ) \(⋮\)d
=> 12n + 20 \(⋮\)d
12n + 21 \(⋮\)d
=> d = 1
=>3n+5/4n+7 là phân số tối giản
câu 3 làm tương tự câu 2
#๖ۣۜβσʂʂ彡
Bổ sung câu 1 của Thiên Ân :
Để \(\frac{n+5}{n+6}\)là phân số tối giản
=> ƯCLN ( n + 5 ; n + 6 ) = 1
Gọi ƯCLN ( n + 5 ; n + 6 ) = d
=> n + 5 \(⋮\)d và n + 6 \(⋮\)d ( 1 )
Từ 1
=> ( n + 6 ) - ( n + 5 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm
Ta có:
\(\frac{20n+13}{4n+3}=\frac{20n+15}{4n+3}-\frac{2}{4n+3}=5-\frac{2}{4n+3}\)
Để \(5-\frac{2}{4n+3}\)có giá trị nhỏ nhất
=>\(\frac{2}{4n+3}\)có giá trị lớn nhất
=>4n+3 là số tự nhiên nhỏ nhất có thể
=>4n+3=3
=>n=0
\(\frac{2}{4n+3}=\frac{2}{0+3}=\frac{2}{3}\)
=>\(5-\frac{2}{3}=\frac{15}{3}-\frac{2}{3}=\frac{13}{3}=\frac{20n+13}{4n+3}\)
=>Với n=0 thì \(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)
KL:\(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)với n=0