Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
\(\frac{1}{n+1}+\frac{n}{n+1}+\frac{2n+1}{n+1}\)\(=\frac{1+n+2n+1}{n+1}\)\(=\frac{3n+2}{n+1}\)
a)để A có giá trị nguyên
=>8n+193 chia hết 4n+3
<=>[2(4n+3)+187] chia hết 4n+3
=>187 chia hết 4n+3
=>4n+3 thuộc U(187) ( bạn tự liệt kê rồi xét từng TH )
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản