Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay
\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)
Để A có giá trị nguyên
<=> 3n + 4 ⋮ n - 1
=> ( 3n - 3 ) + 7 ⋮ n - 1
=> 3 . ( n - 1 ) + 7 ⋮ n - 1
vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1
=> n - 1 ∈ Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
n-1 | 1 | -1 | -7 | 7 |
n | 2 | 0 | -6 | 8 |
mọi giá trị n đều thuộc z (chọn)
Vậy x ∈ { - 6 ; 0 ; 2 ; 8 }
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D
Do A có giá trị nguyên
\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)
Mà \(n-1⋮n-1\)
\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)
Xét \(n-1=-1\Rightarrow n=-4\)
\(n-1=-5\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=1\Rightarrow n=2\)
Vậy ...
A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}
Ta có: n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 5 => n = 6
n - 1 = -5 => n = -4
Vậy n = {2;0;6;-4}
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1
=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1
\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)
=> n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
n - 1 = 3 => n = 3 + 1 = 4
n - 1 = -3 => n = -3 + 1 = -2
=> \(n\in\left\{-2;0;2;4\right\}\)
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1=-1 => n=0
- Nếu n-1=1 => n=2
- Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1=-1 => n=0
- Nếu n-1=1 => n=2
- Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để \(\frac{3n+2}{n-1}\)là số nguyên thì 3n + 2 phải chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì 3(n - 1) chia hết cho n - 1)
=> n - 1 thuộc {-1; 1; -5; 5}
=> n thuộc {0; 2; -4; 6}
Vậy...
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
A E Z<=>5/n-1 E Z<=>5 chia hết chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5]
=>n E {-4;0;2;6}
vậy....
Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :
\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\left(n-4\right)+21⋮n-4\)
\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)
Rồi bạn lập bảng rồi tính giá trị ra
Tương tự câu b
\(6n+5=6n-1+6⋮6n-1\)
\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)
a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4
hay 3n - 4 + 13 chia hết cho n - 4
nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )
do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}
hay n thuộc { -9;3;5;17}
Vậy n thuộc { -9;3;5;17}
b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1
hay 6n -1 + 6 chia hết cho 6n - 1
nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)
do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}
xét các trường hợp được n = 0
Vậy n = 0
a)ĐKXĐ:n \(\ne\)1
\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
=>n-1 thuộc Ư(7)={1;-1;7;-7}
=>n ={2;0;8-6}
Ta có: B = \(\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)
Để B \(\in\)Z <=> 1 \(⋮\)n + 1 <=> n + 1 \(\in\)Ư(1) = {1; -1}
Với: +) n + 1 = 1 => n = 1 - 1 = 0
+)n + 1 = -1 => n = -1 - 1 = -2
Vậy ...
Để \(B\inℤ\)
=> \(3n+2⋮n+1\)
=> \(3n+3-1⋮n+1\)
=> \(3\left(n+1\right)-1⋮n+1\)
Ta có : Vì \(3n+1⋮n+1\)
=> \(-1⋮n+1\)
=> \(n+1\inƯ\left(-1\right)\)
=> \(n+1\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp :
Vậy \(B\inℤ\Leftrightarrow n\in\left\{0;-2\right\}\)