Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, giải dùm mình bài
Cho tam giác abc có ab=ac=bc. Hai đường phân giác bm và cm cắt nhau tại i . Chứng minh rằng: a) ia=ib=ic b) góc aib=góc bic=góc cia
nhaa
X = một số tự nhiên khác 0
X có giá trị bằng 1 số
Tóm lại X = X không gì có thể chối cãi được.
Ta có : n - 1 chia hết cho 2n + 3
=> 2n - 1 chai hết cho 2n + 3
=> 2n + 3 - 4 chai hết cho 2n + 3
=> 4 chia hết cho 2n + 3
=> 2n + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng:
2n + 3 | -4 | -2 | -1 | 1 | 2 | 4 |
2n | -7 | -5 | -4 | -2 | -1 | 1 |
n | -2 |
Vì n + 1 là ƯC(n + 1; 2n + 3) nên ta có :
n + 1 ⋮ n + 1và 2n + 3 ⋮ n + 1
<=> 2(n + 1) ⋮ n + 1 và 2n + 3 ⋮ n + 1
<=> 2n + 2 ⋮ n + 1 và 2n + 3 ⋮ n + 1
=> (2n + 3) - (2n + 2) ⋮ n + 1
=> 1 ⋮ n + 1 => n + 1 = - 1; 1
=> n = - 2; 0
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)
4n - 5 chia hết cho n-3
=> 4n - 12 + 7 chia hết cho n - 3
=> 7 chia hết cho n-3
=> n - 3 \(\in\)U(7)
U(7) = {-7;-1;1;7}
n - 3 = -7
=> n = -4
n - 3 = -1
n = 2
n - 3 = 1
n = 4
n - 3 = 7
n = 10
Vậy x \(\in\){-4;2;4;10}
a) \(n^3+2n^2+3n+5=n^3-n^2+3n^2-3n+6n-6+11=\left(n-1\right)\left(n^2+3n+6\right)+11\)
chia hết cho \(n-1\)tương đương \(11⋮\left(n-1\right)\Leftrightarrow n-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)(vì \(n\)nguyên)
\(\Leftrightarrow n\in\left\{-10,0,2,12\right\}\)
b) \(4n^2+2n+1=4n^2-2n+4n-2+3=\left(2n-1\right)\left(2n+2\right)+3\)chia hết cho \(2n-1\)tương đương với \(3⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)(vì \(n\)nguyên)
\(\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
.