Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
n-3 | -1 | 1 | -17 | 17 |
n | 2 | 4 | -14 | 20 |
KL | tm | tm | loại | tm |
Vậy....
các câu trên dễ rồi tự giải nhé mk chỉ giải của d thôi
d, n^2 + 7 chia hết cho n+1 (1)
n+1 chia hết cho n+1
=> (n-1)(n+1) chia hết cho n+1
=> n^2 -1 chia hết cho n+1 (2)
từ (1) và (2)
=> n^2+7 - n^2 +1 chia hết cho n+1
=> 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 ={ 1,2,4.-1.-2.-4}
=> n={ 0,1,3,-2,-3,-5}
thử lại nhé ( vì đây là giải => nên phải thử lại nha)
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
Ta có n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
Suy ra (n+7)-(n+2) chia hết cho n+2
Suy ra 5 chia hết cho n+2
Bạn tu lam tiep nhe