Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)
Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương
Do n là các số nguyên dương nên \(n+2\ge2\)
Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương
Đặt \(\left\{{}\begin{matrix}n-5=a^3\left(1\right)\\n+2=b^3\left(2\right)\end{matrix}\right.\) \(\left(a,b\inℤ;a< b\right)\)
\(\left(1\right)\Leftrightarrow n=a^3+5\)
Thay vào (2), ta có \(a^3+5+2=b^3\Leftrightarrow b^3-a^3=7\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)=7\)
Vì \(a< b\Leftrightarrow b-a>0\), mà \(\left(b-a\right)\left(a^2+ab+b^2\right)=7>0\)\(\Rightarrow a^2+ab+b^2>0\)
Ta chỉ xét 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}b-a=1\\a^2+ab+b^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^2+a\left(a+1\right)+\left(a+1\right)^2=7\end{matrix}\right.\)
Giải phương trình thứ hai, ta được \(a^2+a^2+a+a^2+2a+1=7\)\(\Leftrightarrow3a^2+3a-6=0\)\(\Leftrightarrow a^2+a-2=0\)\(\Leftrightarrow a^2-a+2a-2=0\)\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)=0\)\(\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-2\end{matrix}\right.\) (nhận)
Với \(a=1\) thì \(b=a+1=1+1=2\) (nhận) từ đó \(n-5=a^3=1^3=1\Rightarrow n=6\)
Thử lại: \(n+2=6+2=8=2^3=b^3\) (nhận)
TH2: \(\left\{{}\begin{matrix}b-a=7\\a^2+ab+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+7\\a^2+a\left(a+7\right)+\left(a+7\right)^2=1\end{matrix}\right.\)
Giải phương trình thứ hai, ta được \(a^2+a^2+7a+a^2+14a+49=1\)\(\Leftrightarrow3a^2+21a+48=0\)\(\Leftrightarrow a^2+7a+16=0\)\(\Leftrightarrow4a^2+28a+64=0\)\(\Leftrightarrow\left[\left(2a\right)^2+2.2a.7+7^2\right]+15=0\)\(\Leftrightarrow\left(2a+7\right)^2+15=0\)\(\Leftrightarrow\left(2a+7\right)^2=-15\) (vô lí)
Vậy ta loại TH2
Do đó để \(n-5\) và \(n+2\) đều là lập phương của 1 số nguyên thì \(n=6\)