\(\frac{n-23}{n=89}\) là bình phương 1 số hữu tỉ dương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

Đặt \(n^4+n^3+n^2+n+1=a^2\)

\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)

Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)

\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.

 

24 tháng 2 2020

*Trường hợp 4n+1 ko chia ht n+7 Thì Để biểu thức hữu tỉ nên 4n+1 và n+7 là các số ch/phương

-Có 4n+1 là số chính phương lẻ nên chia 8 dư 1\(\Rightarrow n\) chẵn

Suy ra n+7 là số chính phương lẻ

Có 4n+1 và n+7 là số ch/phương lẻ nên tận cùng 1,5,9 suy ra chia 5 dư 1,0,4(1)

Mà 4n+1+n+7=5n+8 chia 5 dư 3 (2)

Từ (1)và (2) suy ra 4n+1 và n+7 ko là các số chính phương

* Trường hợp 4n+1 chia hết n+7

Vì biểu thức hữu tỉ nên bình phương của nó cũng hữu tỉ

\(\frac{4n+1}{n+7}=\frac{3n+21+n+7-27}{n+7}=3+1-\frac{27}{n+7}\)

n ng/ dương nên n+7=(9,27) suy ra n=2,20

19 tháng 10 2016

Ta có \(\frac{n\left(2n-1\right)}{26}=k^2\Leftrightarrow2n^2-n-26k^2=0\)

\(\Delta=208k^2+1=t^2\)(vì n nguyên dương)

\(\Rightarrow\left(t+4\sqrt{13}k\right)\left(t-4\sqrt{13}k\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}t+4\sqrt{13}k=1\\t-4\sqrt{13}k=1\end{cases}\Leftrightarrow\hept{\begin{cases}k=0\\t=1\end{cases}}}\)

Thế vào tìm được \(\orbr{\begin{cases}n=0\\n=\frac{1}{2}\end{cases}}\)

Vậy không có giá trị n nguyên dương nào thỏa mãn cái đó

14 tháng 6 2018

\(\frac{n\left(2n-1\right)}{26}\text{ là SCP }\Leftrightarrow n\left(2n-1\right)=26k^2\)

\(\Delta_n=208k^2+1=y^2\Leftrightarrow y^2-208k^2=1\underrightarrow{\text{PELL}}\)

\(k=\pm\frac{\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m}{8\sqrt{13}}\)

\(n=\frac{1}{8}\left[-\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m+2\right]\left(m\inℤ,m\ge0\right)\)

4 tháng 10 2017

Cái này bạn phải chứng minh bổ đề phụ nhá

\(n=1\)ta thấy thõa mãn

Nếu \(n\ge2\)thì \(n^{1998}+n^{1987}+1>n^2+n+1\)

Măt khác : \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)

Nên \(n^2+n+1\)| \(n^{1988}+n^{1987}+1\)

Vậy \(n^{1988}+n^{1987}+1\)  là hợp số

Mik có sửa lại cái đề mới nãy của bạn ( bạn xem lại đề bài bạn cho có đúng không nhé )

12 tháng 3 2021

Đặt

\(a^2=n^2-n+2\)

Ta có:

\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)

\(\Rightarrow n^2-n+2=n^2\)

\(\Leftrightarrow n=2\)

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

5 tháng 2 2017

Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)

=> m=5;n=1;p=2