Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài a, và b, giống nhau nên mình sẽ là 1 bài rồi bạn làm tương tự nha
Ta có: 25 chia hết cho a-3
=> (a-3)€ U(25)= {1,-1,-5,5,-25,25}
=> a-3 = 1. => a=4
Tương tự
ks nha. Chờ tui síu rooid làm mấy bài còn lại
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
a) để 2a+1 là bội của 2a-1 thì
\(2a+1⋮2a-1\Rightarrow2a+1-\left(2a-1\right)⋮2a-1\Rightarrow2⋮2a-1\)
\(\Rightarrow2a-1\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow2a\in\left\{0;2;-1;3\right\}\)
\(\Rightarrow a\in\left\{0;1;-\frac{1}{2};\frac{3}{2}\right\}\)
Mà a nguyên nên \(a\in\left\{0;1\right\}\)
vậy ...
câu b dễ hơn câu a, tự ik nha
câu c nếu lâu quá ko ai giải cho bn thì mik giải
a)Ta có : 2a+1\(\in\)B(2a-1)
\(\Leftrightarrow\)2a+1 \(⋮\)2a-1
\(\Leftrightarrow\)2a-1+2 \(⋮\)2a-1
\(\Leftrightarrow\)2 \(⋮\)2a-1
\(\Leftrightarrow\)2a-1 \(\in\)Ư(2)={1;2;-1;-2}
\(\Leftrightarrow\)2a \(\in\){2;3;0;-1}
\(\Leftrightarrow\)a \(\in\){1;0}